Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inhal Toxicol ; : 1-12, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776456

RESUMO

Objectives: Living conditions play a major role in health and well-being, particularly for the cardiovascular and pulmonary systems. Depleted housing contributes to impairment and development of disease, but how it impacts body resiliency during exposure to environmental stressors is unknown. This study examined the effect of depleted (DH) versus enriched housing (EH) on cardiopulmonary function and subsequent responses to wildfire smoke. Materials and Methods: Two cohorts of healthy female mice, one of them surgically implanted with radiotelemeters for the measurement of electrocardiogram, body temperature (Tco) and activity, were housed in either DH or EH for 7 weeks. Telemetered mice were exposed for 1 h to filtered air (FA) and then flaming eucalyptus wildfire smoke (WS) while untelemetered mice, which were used for ventilatory assessment and tissue collection, were exposed to either FA or WS. Animals were continuously monitored for 5-7 days after exposure. Results: EH prevented a decrease in Tco after radiotelemetry surgery. EH mice also had significantly higher activity levels and lower heart rate during and after FA and WS. Moreover, EH caused a decreased number of cardiac arrhythmias during WS. WS caused ventilatory depression in DH mice but not EH mice. Housing enrichment also upregulated the expression of cardioprotective genes in the heart. Conclusions: The results of this study indicate that housing conditions impact overall health and cardiopulmonary function. More importantly, depleted housing appears to worsen the response to air pollution. Thus, non-chemical factors should be considered when assessing the susceptibility of populations, especially when it comes to extreme environmental events.

2.
Plant Dis ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587803

RESUMO

Euonymus japonicus Thunb., also known as the evergreen spindle tree, is an evergreen tree, which is widely planted as a hedge plant along streets in South Korea. In April 2022, severe anthracnose symptoms were observed on the leaves of this tree in Jangsu in the Jeonbuk Province of the country (35°43'49.44″N, 127°34'53.7″E). About 80% of the leaves of each affected tree within a 0.03-ha area showed incidence of the disease on approximately 30 trees were planted along the roadside (~30 m). These symptoms typically included circular or irregularly shaped whitish-gray lesions with a diameter of 2.0 to 3.0 cm. In cases where some leaves were severely affected, larger blotches formed. To isolate the pathogen, about ten leaves showing anthracnose symptoms on each tree were randomly selected and brought to the laboratory. Fungal isolations were made from acervuli filled with conidial masses on infected evergreen tissues, followed by plating onto 2% potato dextrose agar (PDA) as well as incubated at 25℃. On the PDA, colonies were circular, raised, green-grey or dark grey, and had a distinct white margin. The conidia were single-celled, transparent, cylindrical with rounded ends, had smooth walls, with a length ranging from 12 µm to 16.7 µm and a width raging from 4 µm to 6.5 µm (av. = 14.1 X 5.0 µm, n=40). Of those that were successfully recovered with approximately 90% frequency, two monoconidial isolates were deposited to the culture collection at Chungnam National University in South Korea (Accession number: CDH059-060). To ensure the identity of the fungus, genomic DNAs were extracted from the selected isolates, CDH059-060, and were sequenced. This was achieved based on partial sequences of the internal transcribed spacer (ITS), actin and beta-tubulin (TUB2) gene regions which were amplified using ITS1F / ITS4 (Gardes and Bruns 1993; White et al. 1990), ACT-512F / ACT-783R (Carbone and Kohn 1999), and T1 / Bt2b (O'Donnell and Cigelnik 1997; Glass and Donaldson 1995) primer pairs, respectively. The resulting sequences were deposited to GenBank (OR984424-425) for ITS, (OR996289-290) for actin, and (OR996291-292) for TUB2. For a phylogenetic analysis, sequences from different gene regions (ITS, actin and TUB2) retrieved from GenBank were aligned, concatenated, and analyzed as a single dataset based on a maximum likelihood analysis. The phylogenetic result revealed that the fungus isolated in this study was positioned in a clearly distinct lineage, provisionally representing an undetermined species of Colletotrichum, which is most closely related to Colletotrichum liaoningense (Y.Z. Diao, C. Zhang, L. Cai & X.L. Liu, CGMCC3.17616 (KP890104 for ITS, KP890097 for actin, and KP890111 for TUB, Diao et al. 2017). Sequence comparisons revealed that this pathogen differed from C. liaoningense at 20 of 494 characters (∼4.0%) in the ITS and 2 of 251 (∼1.0%) in the actin sequences. For pathogenicity tests, three seedlings of E. japonicus were used. The leaves for each tree were treated with 10 ml of a conidial suspension by spraying (1x106 conidia ml-1 of the isolate, CDH059), while the three seedlings were treated with distilled water as control. After sprayed, the treated areas were sealed with plastic bags for a day to maintain humidity. Anthracnose symptoms identical to those observed in the field appeared seven days after inoculations, while no symptoms were observed in the control. Re-isolations were successfully achieved from the treatments, fulfilling Koch's postulates. Anthracnose associated with the provisionally novel species of Colletotrichum sp. on E. japonicus has not been recorded elsewhere, and in this regard, this is the first report of anthracnose caused by Colletotrichum sp. on E. japonicus in Korea. To effectively control the disease, more attention should be paid to the host range of the pathogen and other regions where the disease caused by the pathogen might occur in the country.

3.
Plant Dis ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512194

RESUMO

Machilus thunbergii Siebold & Zucc., known as Japanese bay tree, is an evergreen tree distributed widely in East Asia, including South Korea, where the species is of ecological importance. Machilus thunbergii provides habitat for wildlife species and is a common urban tree. In September 2022, anthracnose symptoms on leaves were observed in Jeju (33°26'02.4"N, 126°19'48.8"E) and Tongyeong (34°49'27.1"N, 128°24'01.8"E) in South Korea. Disease incidence on leaves of each affected tree, naturally growing in an urban forest area covering approximately 0.5 ha was approximately ~ 70 % in each study area. Anthracnose symptoms that were observed on 70 to 80% leaves per tree in each study area included orbicular or irregular, whitish-grey spots on leaves that were 1.5 to 3.0 cm in diam. In some cases where leaves were severely affected, larger blotches were formed, leading to bleaching symptoms and eventually defoliation. For pathogen isolation, two or three leaves showing anthracnose symptoms from each of the 15 trees were randomly selected and brought to the laboratory. Fungal isolations were then directly made by transferring spores from acervuli that developed on diseased leaves onto potato dextrose agar (PDA) media. Cushion shaped acervuli filled with salmon to orange-colored conidial masses were produced on media approximately two weeks after the incubation at 25 ± 1°C with a photoperiod of 12 h. Conidia were single celled, hyaline, cylindrical with rounded ends, smooth walls, 13.7 to 18.1 µm long and 3.1 to 4.5 µm wide (n=30). Among 15 cultures that were successfully isolated, 10 isolates were retained based on culture characteristics, and two randomly selected monoconidial cultures were deposited in the culture collection (CDH) of the Chungnam National University, Republic of Korea (Accession No. CDH057-58). Two isolates selected, CDH057 and CDH058, were subjected to identification, and this was achieved based on multiplesequence comparisons using on internal transcribed spacer regions of rDNA (ITS1 and ITS2), partial sequences of actin (ACT) and ß-tubulin (TUB2) gene regions amplified using ITS1F / ITS4, ACT-512F / ACT-783R and T1 / Bt2b, respectively (Weir et al. 2012). The representative sequence data were deposited in GenBank under the accession numbers OR473277 and OR473278 for the ITS, OR480772 and OR480773 for ACT, and OR480774 and OR480775 for TUB2. The resulting sequences were further used for a phylogenetic analysis based on the maximum likelihood method using a concatenated dataset of the ITS, ACT and TUB2 gene sequences for Colletotrichum species in the C. gloeosporioides clade. The results showed that the pathogen isolated in this study clustered with Colletotrichum siamense (Vouchered specimens: MFLU 090230, COUFPI291, and COUFPI294) (Prihastuti et al. 2009). Sequence comparisons revealed that the isolates obtained in this study differed from the type species of C. siamense (MFLU 090230; FJ972613 for ITS, FJ 907423 for ACT, FJ907438 for TUB2) at 2 of 258 bp (∼0.8%) and 6 of 387 bp (∼1.6%) in the ACT and TUB2 sequences, respectively, while the ITS was identical to the type species. For pathogenicity tests, a total of ten three-year-old seedlings of M. thunbergii were used. The leaves of each tree were sprayed with 5 ml of conidial suspension (105 conidia/ml, isolate CDH057). Three control plants were sprayed with sterile water. After being sprayed, treated areas were sealed with a plastic bag for 24 hours to preserve humidity. Anthracnose symptoms, identical to those observed in the field, appeared five to seven days after the inoculations, while no symptoms were observed on control plants. The isolates used in the pathogenicity test were reisolated from 90% of lesions, and their identity was confirmed based on sequence comparisons, thus fulfilling Koch's postulates. Species of the C. gloeosporioides species complex include important plant pathogens, particularly C. siamense, which cause significant losses of economic and ecological relevance on a wide range of hosts (~ 100 hosts) (Talhinhas and Baroncelli 2021). Although C. fioriniae in the C. acutatum species complex, was found on M. thunbergii in South Korea (Thao et al. 2023), anthracnose associated with C. siamense on M. thunbergii has not been reported in the country. In this regard, this is the first report of anthracnose caused by C. siamense on M. thunbergii in South Korea. To effectively control the disease, more attention should be paid on the host range of the pathogen and other regions where the disease caused by the pathogen might occur in the country.

4.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081277

RESUMO

High-energy γ rays generated from inertial confinement fusion (ICF) experiments have become an important signature for studying the dynamics of implosion processes. Due to their high-energy and penetrating nature, γ rays are the most unperturbed fusion products, which can preserve the original birth information of the fusion process. Fusion γ rays provide a direct measure of nuclear reaction rates (unlike x rays) without being compromised by Doppler spreading (unlike neutrons). However, unambiguous γ-ray measurements for ICF study further required a decade-long period of technological development, which included a deepening understanding of fusion γ-ray characteristics and innovations in instrument performance. This review article introduces the production mechanism of the prompt and secondary γ rays and various ICF performance parameters (e.g., bang time and burn width), which can be derived from γ-ray measurement. A technical overview will be followed by summarizing γ-ray detectors fielded or proposed, especially for high-yield ICF experiments at the Omega Laser Facility and National Ignition Facility. Over the past few years, γ-ray diagnostic technologies have been extended beyond ICF research. A few examples of non-ICF applications of γ-ray detectors are introduced at the end of this article.

5.
Sci Rep ; 13(1): 16282, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770535

RESUMO

Puerarin, daidzein C-glucoside, was known to be biotransformed to daidzein by human intestinal bacteria, which is eventually converted to (S)-equol. The metabolic pathway of puerarin to daidzein by DgpABC of Dorea sp. PUE strain was reported as puerarin (1) → 3''-oxo-puerarin (2) → daidzein (3) + hexose enediolone (C). The second reaction is the cleavage of the glycosidic C-C bond, supposedly through the quinoid intermediate (4). In this work, the glycosidic C-C bond cleavage reaction of 3''-oxo-puerarin (2) was theoretically studied by means of DFT calculation to elucidate chemical reaction mechanism, along with biochemical energetics of puerarin metabolism. It was found that bioenergetics of puerarin metabolism is slightly endergonic by 4.99 kcal/mol, mainly due to the reaction step of hexose enediolone (C) to 3''-oxo-glucose (A). The result implied that there could be additional biochemical reactions for the metabolism of hexose enediolone (C) to overcome the thermodynamic energy barrier of 4.59 kcal/mol. The computational study focused on the C-C bond cleavage of 3''-oxo-puerarin (2) found that formation of the quinoid intermediate (4) was not accessible thermodynamically, rather the reaction was initiated by the deprotonation of 2''C-H proton of 3''-oxo-puerarin (2). The 2''C-dehydro-3''-oxo-puerarin (2a2C) anionic species produced hexose enediolone (C) and 8-dehydro-daidzein anion (3a8), and the latter quickly converted to daidzein through the daidzein anion (3a7). Our study also explains why the reverse reaction of C-glycoside formation from daidzein (3) and hexose enediolone (C) is not feasible.


Assuntos
Glicosídeos Cardíacos , Isoflavonas , Humanos , Isoflavonas/química , Glucosídeos/metabolismo , Equol , Glucose/metabolismo , Modelos Teóricos
6.
Rev Sci Instrum ; 93(10): 103525, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319391

RESUMO

Gas Cherenkov detectors provide a time resolved measurement of the fusion burn in inertial confinement fusion experiments. The fusion rate delivers critical benchmark figures, such as burn width and bang time. Recent detector improvements pushed temporal resolution to 10 ps to make burn width measurements on igniting targets possible. First high temporal resolution measurements using CO2 gas fills had a background signal with a long decay length (tail), which was caused by gas scintillation. This gas scintillation limits the ability of the detector to resolve short burn width and high frequency features in the fusion rate measurements. A thorough investigation of the cause of the tail and mitigation options for gas scintillation is presented here. As a near-term resolution, neon gas is being used to extract fusion burn histories. Paths forward for the next generation of gas Cherenkov detectors are identified including the usage of oxygen as a Cherenkov medium.

7.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628583

RESUMO

The transient receptor potential vanilloid 1 (TRPV1) ion channel plays an important role in the peripheral nociceptive pathway. TRPV1 is a polymodal receptor that can be activated by multiple types of ligands and painful stimuli, such as noxious heat and protons, and contributes to various acute and chronic pain conditions. Therefore, TRPV1 is emerging as a novel therapeutic target for the treatment of various pain conditions. Notably, various peptides isolated from venomous animals potently and selectively control the activation and inhibition of TRPV1 by binding to its outer pore region. This review will focus on the mechanisms by which venom-derived peptides interact with this portion of TRPV1 to control receptor functions and how these mechanisms can drive the development of new types of analgesics.


Assuntos
Toxinas Biológicas , Peçonhas , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Desenvolvimento de Medicamentos , Dor/tratamento farmacológico , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Canais de Cátion TRPV/metabolismo , Peçonhas/farmacologia , Peçonhas/uso terapêutico
8.
Viruses ; 13(12)2021 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-34960653

RESUMO

Fraxinus rhynchophylla, common name ash, belongs to the family Oleaceae and is found in China, Korea, North America, the Indian subcontinent, and eastern Russia. It has been used as a traditional herbal medicine in Korea and various parts of the world due to its chemical constituents. During a field survey in March 2019, mild vein thickening (almost negligible) was observed in a few ash trees. High-throughput sequencing of libraries of total DNA from ash trees, rolling-circle amplification (RCA), and polymerase chain reaction (PCR) allowed the identification of a Fraxinus symptomless virus. This virus has five confirmed open reading frames along with a possible sixth open reading frame that encodes the movement protein and is almost 2.7 kb in size, with a nonanucleotide and stem loop structure identical to begomoviruses. In terms of its size and structure, this virus strongly resembles begomoviruses, but does not show any significant sequence identity with them. To confirm movement of the virus within the trees, different parts of infected trees were examined, and viral movement was successfully observed. No satellite molecules or DNA B were identified. Two-step PCR confirmed the virion and complementary strands during replication in both freshly collected infected samples of ash tree and Nicotiana benthamiana samples agro-inoculated with infectious clones. This taxon is so distantly grouped from other known geminiviruses that it likely represents a new geminivirus genus.


Assuntos
Fraxinus/virologia , Geminiviridae/classificação , Geminiviridae/isolamento & purificação , Doenças das Plantas/virologia , Sequência de Bases , DNA Viral/genética , Geminiviridae/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , República da Coreia , Nicotiana/virologia
9.
Int J Mol Sci ; 22(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063721

RESUMO

Neuropathic pain (NP) is a complex, debilitating, chronic pain state, heterogeneous in nature and caused by a lesion or disease affecting the somatosensory system. Its pathogenesis involves a wide range of molecular pathways. NP treatment is extremely challenging, due to its complex underlying disease mechanisms. Current pharmacological and nonpharmacological approaches can provide long-lasting pain relief to a limited percentage of patients and lack safe and effective treatment options. Therefore, scientists are focusing on the introduction of novel treatment approaches, such as stem cell therapy. A growing number of reports have highlighted the potential of stem cells for treating NP. In this review, we briefly introduce NP, current pharmacological and nonpharmacological treatments, and preclinical studies of stem cells to treat NP. In addition, we summarize stem cell mechanisms-including neuromodulation in treating NP. Literature searches were conducted using PubMed to provide an overview of the neuroprotective effects of stem cells with particular emphasis on recent translational research regarding stem cell-based treatment of NP, highlighting its potential as a novel therapeutic approach.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Inflamação/terapia , Neuralgia/terapia , Transplante de Células-Tronco , Dor Crônica/patologia , Dor Crônica/terapia , Humanos , Inflamação/patologia , Neuralgia/patologia , Manejo da Dor , Células-Tronco/citologia
10.
J Nanosci Nanotechnol ; 21(9): 4768-4772, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691864

RESUMO

In this study, microstructure and sintering behaviors of the gas-atomized Al-(25 or 30) Cr-xSi alloy (x = 5, 10 and 20 at.%) during spark plasma sintering (SPS) process were investigated. Gas-atomized alloy powders were manufactured using Ar gas atomizer process. These alloy powders were consolidated using SPS process at different temperature under pressure 60 MPa in vacuum. Microstructures of the gas-atomized powders and sintered alloys were analyzed using scanning electron microscopy (SEM) with energy-dispersive X-ray spectrometer (EDS), and transmission electron microscopy (TEM). Hardness of the SPS sintered alloys was measured using micro Vickers hardness tester. The Al-Cr-Si bulks with high Cr and Si content were produced successfully using SPS sintering process without crack and obtained fully dense specimens close to nearly 100% T. D. (Theoretical Density). The maximum values of the hardness were 834 Hv for the sintered specimen of the gas atomized Al-30Cr-20Si alloy. Enhancement of hardness value was resulted from the formation of the multi-intermetallic compound with the hard and thermally stable phases and fine microstructure by the addition of high Cr and Si.

11.
J Nanosci Nanotechnol ; 21(9): 4897-4901, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691886

RESUMO

In this study, changes in the microstructure, mechanical properties, and electrical conductivity of cast and extruded Al-Zn-Cu-Mg based alloys with the addition of Li (0, 0.5 and 1.0 wt.%) were investigated. The Al-Zn-Cu-Mg-xLi alloys were cast and homogenized at 570 °C for 4 hours. The billets were hot extruded into rod that were 12 mm in diameter with a reduction ratio of 38:1 at 550 °C. As the amount of Li added increased from 0 to 1.0 wt.%, the average grain size of the extruded Al alloy increased from 259.2 to 383.0 µm, and the high-angle grain boundaries (HGBs) fraction decreased from 64.0 to 52.1%. As the Li content increased from 0 to 1.0 wt.%, the elongation was not significantly different from 27.8 to 27.4% and the ultimate tensile strength (UTS) was improved from 146.7 to 160.6 MPa. As Li was added, spherical particles bonded to each other, forming an irregular particles. It is thought that these irregular particles contribute to the strength improvement.

12.
J Nanosci Nanotechnol ; 21(3): 1984-1989, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404480

RESUMO

The effect of addition of Mischmetal (MM) on the microstructure, electrical and thermal conductivity, and mechanical properties of the as-extruded Al-MM based alloys were investigated. The studied AlxMM alloys (where x = 0.2, 0.5, 1.0, 1.5, 2.0 and 5.0 wt.%) were cast and homogenized at 550 °C for 4 h. The cast billets were extruded into 12 mm bars with an extrusion ratio of 39 at 550 °C. The addition of MM resulted in the formation of Al11(Ce, La)3 intermetallic compounds and the area fraction of these intermetallic compounds increased with an increase in the MM content. The Al11(Ce, La)3 phase, which was distributed in the as-cast alloys, was crushed into fine particles and arrayed along the extruded direction during the extrusion process. In particular, these intermetallic compounds in the extruded Al-5.0MM alloy were distributed with a wide-band structure due to the fragmentation of the eutectic phase with a lamellar structure. As the MM content increased from 1.0 wt.% to 5.0 wt.%, the average grain size decreased remarkably from 740 to 73 µm. This was due to formation of Al11(Ce, La)3 particles during the hot extrusion process, which promoted dynamic recrystallization and suppression of grain growth. The electrical and thermal conductivity of the extruded alloys containing up to 2.0 wt.% MM were around 60.5% IACS and 230 W/m · K, respectively. However, the electrical and thermal conductivity of the extruded alloy with 5.0 wt.% MM decreased to 55.4% IACS and 206 W/m · K, respectively. As the MM content increased from 1.0 wt.% to 5.0 wt.%, the ultimate tensile strength (UTS) was improved remarkably from 74 to 119 MPa which was attributed to the grain refinement and formation of Al11(Ce, La)3 intermetallic compounds by the addition of MM.

13.
J Nanosci Nanotechnol ; 21(3): 2015-2018, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404486

RESUMO

Microstructure and properties of Al-2 wt.%Zn-1 wt.%Cu-xMg (x = 0.1, 0.3, 0.5, 0.7 wt.%) alloy extrusion materials were investigated. The lattice constants for the (311) plane increased to 4.046858, 4.048483, 4.050114 and 4.051149 Å with the addition of 0.1, 0.3, 0.5, and 0.7 wt.% of elemental Mg. The average grain size of the as-extruded Al alloys was found to be 328.7, 297.7, 187.0 and 159.3 µm for the alloys with 0.1, 0.3, 0.5, and 0.7 wt.% Mg content, respectively. The changes in the electrical conductivity by the addition of elemental Mg in Al-2 wt.%Zn-1 wt.%Cu alloy was determined, and it was found that for the addition of 0.1, 0.3, 0.5, and 0.7 wt.% Mg, the conductivity decreased to 51.62, 49.74, 48.26 and 46.80 %IACS. The ultimate tensile strength of Al-2 wt.%Zn-1 wt.%Cu-0.7 wt.%Mg alloy extrusion was increased to 203.55 MPa. Thus, this study demonstrated the correlation between the electrical conductivity and strength for the Al-2 wt.%Zn-1 wt.%Cu-xMg alloys.

14.
J Org Chem ; 85(15): 9727-9736, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32614179

RESUMO

The controversial single-electron-transfer process, frequently proposed in many 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)-mediated reactions, was investigated experimentally and theoretically using the oxidative cyclization of aroylhydrazone with DDQ. DDQ-mediated oxadiazole formation involves several processes, including cyclization to form an oxadiazole ring and N-H bond cleavage, either by proton, hydride, or hydrogen atom transfer. The detailed mechanistic study using the M06-2X density functional theory, and the 6-31+G(d,p) basis set, suggests that the pathways involving radical ion pair (RIP) intermediates, which resulted from single-electron transfer (SET), were found to be energetically nearly identical to the pathway without the SET. The substituent-dependent reactivity of oxadiazole formation was consistent with the free energy profiles of both pathways, with or without the SET. This result indicates that in addition to the electron-transfer pathway, the nucleophilic addition/elimination pathway for DDQ should be considered as a possible mechanism of the oxidative transformation reaction using DDQ.

15.
Sensors (Basel) ; 20(8)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295302

RESUMO

As unmanned ground and aerial vehicles become more accessible and their usage covers a wider area of application, including for threatening purposes which can cause connected catastrophe, a surveillance system for the public places is being considered more essential to respond to those possible threats. We propose an inexpensive, lighter, safer, and smaller radar system than military-grade radar systems while keeping reasonable capability for use in monitoring public places. The paper details the iterative process on the system design and improvements with experiments to realize the system used for surveillance. The experiments show the practical use of the system and configuration for a better understanding of using the system. Cyber-physical systems for outdoor environments can benefit from the system as a sensor for sensing objects as well as monitoring.

16.
J Nanosci Nanotechnol ; 20(7): 4216-4220, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31968444

RESUMO

Thermal properties and microstructure of Al-4 wt.% Zn-2 wt.% Cu-x (x = 2 wt%. Mg, 2 wt%. Sn, 0.7 wt.% Mg-0.7 wt.% Sn-0.7 wt.% Ca) alloys on cast and extrusion have been investigated with extrusion temperature of 400 °C. Al-4 wt.% Zn-2 wt.% Cu alloy was composed of Al and Al2Cu phases. By adding Mg contents, Al2Mg3Zn3 phase was increased and Al2Cu phase was decreased respectively. During hot extrusion, elongated in the extrusion direction because of severe deformation. The thermal conductivity with temperature and composition of as-extruded Al-4 wt.% Zn-2 wt.% Cu-x alloys decreases with adding 2 wt.% Mg, 2 wt.% Sn contents from 190.925 and 196.451 W/mK but thermal properties of addition of 0.7 wt.% Mg-0.7 wt.% Sn-0.7 wt.% Ca element slightly reduced from 222.32 to 180.775 W/mK. The ultimate tensile strength (UTS) for Al-4 wt.% Zn- 2 wt.% Cu alloy was 121.67 MPa. By adding 2 wt.% Mg contents, tensile strength was dramatically increased with 350.5 MPa.

17.
J Nanosci Nanotechnol ; 20(7): 4248-4252, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31968451

RESUMO

In this research, effects of Zn and Cu content on microstructure, mechanical properties, electric and thermal conductivity of the as-extruded Al-x(Zn+0.5Cu) alloys were investigated. As the content of Zn and Cu increased, the area ratio of Al2Cu intermetallic compounds increased. After homogenization treatment and extrusion process, most of Al2Cu intermetallic compounds was disappeared due to solution in Al matrix of Cu atoms. As the (Zn+0.5Cu) content increased from 1 to 2 wt.%, the average grain size decreased remarkably from 645 to 227 µm due to the dynamic recrystallization caused by the solute Zn and Cu atoms during the extrusion. With increasing Zn and Cu additions, the thermal conductivity was decreased from 225 (x = 1) to 208 (x = 2) and 183 W/mK (x = 4) due to electric scattering by solute Zn and Cu atoms. The ultimate tensile strength (UTS) of the as-extruded Al-x(1Zn+0.5Cu) alloys improved remarkably from 77 (x = 1) to 142 MPa (x = 4) as Zn and Cu content increased, and the elongation increased from 30 to 33%. This improvement in the strength resulted from the grain refinement and solid solution strengthening due to the solute Zn and Cu atoms. The Zn and Cu addition in Al alloy played an important role in thermal conductivity and mechanical properties.

18.
J Nanosci Nanotechnol ; 20(7): 4307-4311, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31968463

RESUMO

High conductivity Al alloys are widely used for electric materials, heat exchangers, and heat dissipation parts such as electric conductors, transmission lines, communication cables, automobile wires and so on. In this study, the effects of Ca and Mn addition on the microstructure and mechanical properties of Al-0.3Cu-0.2Fe-0.15Si-0.15Zn alloys were investigated. The melt was held at 800 °C for 20 minutes and poured into a mold. The cast Al alloy was hot extruded with a rod having a diameter of 12 mm and a reduction ratio of 38:1. Al-0.3Cu-0.2Fe-0.15Si-0.15Zn-0.9Mn-0.4Ca alloy consists of Al, Al-(Fe, Mn)-Si, Al-(Fe, Mn) and Al-(Ca) intermetallic compounds. The formation of the intermetallic compound and this phase was broken in to small particles during extrusion. As the Ca content increased from 0 to 0.4 wt.%, the electrical conductivity of the extruded Al-0.3Cu- 0.2Fe-0.15Si-0.15Zn alloys increased by 57.3, 57.9 and 59.0 %IACS (International annealed copper standard). Al-0.3Cu-0.2Fe-0.15Si-0.15Zn-0.9Mn alloy with element additions of Ca, ultimate tensile strength was decreased from 178.3 to 163.2 and 151.8 MPa. However, the elongation was improved to 18.6, 21.6 and 23.15%.

19.
J Nanosci Nanotechnol ; 20(1): 293-297, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383169

RESUMO

In this study, we investigated the effect of Mg addition (0, 0.5, and 1.0 wt%) on the microstructure, mechanical properties, and thermal conductivity of as-extruded Al-RE alloys. With an increase in the Mg content from 0 to 1.0 wt%, the average grain size of the alloys decreased remarkably from 740 to 130 µm and the high-angle grain boundary fraction increased from 35 to 54%. The addition of Mg resulted in the grain refinement of the Al-1.0RE alloy because of the dynamic recrystallization caused by the solute Mg atoms during the extrusion. With an increase in the Mg content from 0.5 to 1.0 wt%, thermal conductivity of the alloy decreased from 231 to 193 W/mK because of the electric scattering caused by the solute Mg atoms. With an increase in the Mg content from 0 to 1.0 wt%, the ultimate tensile strength of the alloy increased remarkably from 74 to 120 MPa, while the strain reduced from 44 to 34%. This improvement in the strength resulted from the grain refinement and solid solution strengthening due to the solute Mg atoms. The Mg addition amount affected the thermal conductivity and strength of the alloys significantly.

20.
J Nanosci Nanotechnol ; 20(1): 530-534, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383205

RESUMO

In this study, we investigate the microstructure and mechanical properties of as-extruded Al-1.0RE alloys. The molten Aluminum alloy was maintained at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod measuring 12 mm thick with a reduction ratio of 38:1. The microstructure and electric conductivity properties of as-extruded Al-1.0RE alloy under different annealing processes were investigated and compared. After extrusion, the intermetallic compound having a needle shape in the cast state was finely decomposed based on the direction of extrusion. Significant changes in the microstructure were detected after annealing at 500 °C with fragmentation and sphering of eutectic particles. The annealing temperature of Al-1.0RE alloy increased proportionally to the electrical conductivity. The formation of Al-RE intermetallic compounds increases the electrical conductivity and improves the mechanical properties of the alloy through precipitation hardening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...