Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36143648

RESUMO

This paper presents a direct comparison of the mechanical and crack-healing properties of strain hardening cementitious composites (SHCC) under water submersion in a laboratory and in a natural environment outdoors. Portland cement, slag, crumb rubber powder, and hybrid polyethylene and polyvinyl alcohol fibers were used for the SHCC, and mixture proportions were determined. Specimens were exposed to different environmental conditions. A sequence of experimental tests including those for density, compressive strength, and tensile properties was performed to assess the mechanical properties of the SHCC. To confirm the healing feasibility of the SHCC, crack width reduction, stiffness recovery, and tensile performance at post-healing were adopted. The test results showed that underwater conditions are better than natural conditions in improving both the mechanical and crack-healing properties of SHCC. Specifically, the SHCC cured in natural conditions had a lower compressive strength, tensile strength, and tensile strain capacity than that cured in underwater conditions by 10%, 4%, and 3%, respectively. The SHCC cured in underwater conditions had a healing threshold of crack width of 60 µm, while the SHCC cured in natural conditions had very limited crack-healing capacity. Additionally, stiffness recovery of the SHCC cured in underwater conditions was higher than that cured in natural conditions.

2.
Materials (Basel) ; 14(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34201979

RESUMO

This paper presents an experimental investigation on the effects of the replacement length of concrete with engineered cementitious composites (ECC) on the cyclic behavior of a reinforced concrete (RC) column. A conventional RC column specimen and two RC composite columns designed with ECC were fabricated. To investigate the cyclic behavior of each specimen, a series of cyclic loading tests was performed under a reversed cyclic loading condition with a constant axial load. Test results showed that ECC columns exhibited higher cyclic behavior in terms of load carrying capacity, ductility, and energy dissipation capacity compared to the RC column. It was also found that when applying ECC to the column specimen with a length of 3.6d or more, the energy dissipation capacity was greatly increased.

3.
Sensors (Basel) ; 17(8)2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28796156

RESUMO

The potential for monitoring the construction of post-tensioned concrete beams and detecting damage to the beams under loading conditions was investigated through an experimental program. First, embedded sensors were investigated that could measure pre-stress from the fabrication process to a failure condition. Four types of sensors were installed on a steel frame, and the applicability and the accuracy of these sensors were tested while pre-stress was applied to a tendon in the steel frame. As a result, a tri-sensor loading plate and a Fiber Bragg Grating (FBG) sensor were selected as possible candidates. With those sensors, two pre-stressed concrete flexural beams were fabricated and tested. The pre-stress of the tendons was monitored during the construction and loading processes. Through the test, it was proven that the variation in thepre-stress had been successfully monitored throughout the construction process. The losses of pre-stress that occurred during a jacking and storage process, even those which occurred inside the concrete, were measured successfully. The results of the loading test showed that tendon stress and strain within the pure span significantly increased, while the stress in areas near the anchors was almost constant. These results prove that FBG sensors installed in a middle section can be used to monitor the strain within, and the damage to pre-stressed concrete beams.

4.
Waste Manag Res ; 34(3): 214-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26687102

RESUMO

This article presents the test results of an investigation carried out on the reuse of coal bottom ash aggregate as a substitute material for coarse aggregate in porous concrete production for marine ranch applications. The experimental parameters were the rate of bottom ash aggregate substitution (30%, 50% and 100%) and the target void ratio (15%, 20% and 25%). The cement-coated granular fertiliser was substituted into a bottom ash aggregate concrete mixture to improve marine ranch applications. The results of leaching tests revealed that the bottom ash aggregate has only a negligible amount of the ten deleterious substances specified in the Ministry of Environment - Enforcement Regulation of the Waste Management Act of Republic Korea. The large amount of bubbles/air gaps in the bottom ash aggregate increased the voids of the concrete mixtures in all target void ratios, and decreased the compressive strength of the porous concrete mixture; however, the mixture substituted with 30% and 10% of bottom ash aggregate and granular fertiliser, respectively, showed an equal strength to the control mixture. The sea water resistibility of the bottom ash aggregate substituted mixture was relatively equal to that of the control mixture, and also showed a great deal of improvement in the degree of marine organism adhesion compared with the control mixture. No fatality of fish was observed in the fish toxicity test, which suggested that bottom ash aggregate was a harmless material and that the combination of bottom ash aggregate and granular fertiliser with substitution rates of 30% and 10%, respectively, can be effectively used in porous concrete production for marine ranch application.


Assuntos
Aquicultura/instrumentação , Carpas/metabolismo , Cinza de Carvão/análise , Cinza de Carvão/toxicidade , Materiais de Construção/análise , Materiais de Construção/toxicidade , Animais , Porosidade , República da Coreia , Testes de Toxicidade
5.
Materials (Basel) ; 9(1)2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28787839

RESUMO

The distribution of fiber orientation is an important factor in determining the mechanical properties of fiber-reinforced concrete. This study proposes a new image analysis technique for improving the evaluation accuracy of fiber orientation distribution in the sectional image of fiber-reinforced concrete. A series of tests on the accuracy of fiber detection and the estimation performance of fiber orientation was performed on artificial fiber images to assess the validity of the proposed technique. The validation test results showed that the proposed technique estimates the distribution of fiber orientation more accurately than the direct measurement of fiber orientation by image analysis.

6.
ScientificWorldJournal ; 2014: 209584, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25506063

RESUMO

This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm(2) and 45 N/mm(2), respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4 environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete.


Assuntos
Materiais de Construção , Oryza/química , Polímeros/química , Hidróxido de Sódio/química , Resíduos , Ácidos/química , Força Compressiva , Microscopia de Fluorescência , Peso Molecular , Porosidade , Reologia , Sulfatos/química , Ácidos Sulfúricos/química , Temperatura , Ultrassom , Difração de Raios X
7.
Materials (Basel) ; 7(8): 5802-5815, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28788162

RESUMO

The development of cracking in concrete structures leads to significant permeability and to durability problems as a result. Approaches to controlling crack development and crack width in concrete structures have been widely debated. Recently, it was recognized that a high-performance fiber-reinforced cement composite (HPFRCC) provides a possible solution to this inherent problem of cracking by smearing one or several dominant cracks into many distributed microcracks under tensile loading conditions. However, the chloride permeability of HPFRCC under compressive loading conditions is not yet fully understood. Therefore, the goal of the present study is to explore the chloride diffusion characteristics of HPFRCC damaged by compressive loads. The chloride diffusivity of HPFRCC is measured after being subjected to various repeated loads. The results show that the residual axial strain, lateral strain and specific crack area of HPFRCC specimens increase with an increase in the damage induced by repeated loads. However, the chloride diffusion coefficient increases only up to 1.5-times, whereas the specific crack area increases up to 3-times with an increase in damage. Although HPFRCC shows smeared distributed cracks in tensile loads, a significant reduction in the diffusion coefficient of HPFRCC is not obtained compared to plain concrete when the cyclic compressive load is applied below 85% of the strength.

8.
Materials (Basel) ; 7(12): 7861-7874, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-28788280

RESUMO

In this study, adiabatic temperature rise tests depending on binder type and adiabatic specimen volume were performed, and the maximum adiabatic temperature rises and the reaction factors for each mix proportion were analyzed and suggested. The results indicated that the early strength low heat blended cement mixture had the lowest maximum adiabatic temperature rise (Q∞) and the ternary blended cement mixture had the lowest reaction factor (r). Also, Q and r varied depending on the adiabatic specimen volume even when the tests were conducted with a calorimeter, which satisfies the recommendations for adiabatic conditions. Test results show a correlation: the measurements from the 50 L specimens were consistently higher than those from the 6 L specimens. However, the Q∞ and r values of the 30 L specimen were similar to those of the 50 L specimen. Based on the above correlation, the adiabatic temperature rise of the 50 L specimen could be predicted using the results of the 6 L and 30 L specimens. Therefore, it is thought that this correlation can be used for on-site concrete quality control and basic research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...