Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 12(9): e1356967, 2017 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-28758879

RESUMO

Cytosine DNA methylation is an epigenetic regulatory system used by plants to control gene expression. Methylation pattern always changes after abiotic stresses, pathogens and pest infections or after a treatment with salicylic acid (SA). The latter is a key player in plant development and defense against insect herbivores, pathogens, and abiotic stresses. The roles of SA on the methylation patterns and the plant development were performed in 4 pearl millet (Pennisetum glaucum) varieties. Seedlings of 4 early-flowering photosensitive genotypes (PMS3, PMI8, PMG, and PMT2) were grown on MS medium supplemented with null or different doses of SA. Root growth was used as a parameter to evaluate the effects of SA at early stage development. DNA from these seedlings was extracted and Methylation-Sensitive Amplified Polymorphism (MSAP) was measured to assess the effects of SA on methylome. The methylation analysis revealed that SA treatment decreased the methylation, while inhibiting the root growth for all varieties tested, except in PMG at 0.5 mM, indicating a dose and a genotype response-dependence. The methylation level was positively correlated with the root growth. This suggests that SA influences both the methylome by demethylation activities and the root growth by interfering with the root development-responsive genes. The demethylation process, induced by the REPRESSOR OF SILCENCING 1 (ROS1) may activate R genes, or GH3.5 and downregulate the hormonal pathway under root development. These findings showed the pearl millet metabolism prioritized and promoted the defense pathways over vegetative development during stress.


Assuntos
Pennisetum/metabolismo , Raízes de Plantas/metabolismo , Ácido Salicílico/farmacologia , Plântula/metabolismo , Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Pennisetum/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos
2.
J Genet Genomics ; 37(1): 1-12, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20171573

RESUMO

Cytosine bases of the nuclear genome in higher plants are often extensively methylated. Cytosine methylation has been implicated in the silencing of both transposable elements (TEs) and endogenous genes, and loss of methylation may have severe functional consequences. The recent methylation profiling of the entire Arabidopsis genome has provided novel insights into the extent and pattern of cytosine methylation and its relationships with gene activity. In addition, the fresh studies also revealed the more dynamic nature of this epigenetic modification across plant development than previously believed. Cytosine methylation of gene promoter regions usually inhibits transcription, but methylation in coding regions (gene-body methylation) does not generally affect gene expression. Active demethylation (though probably act synergistically with passive loss of methylation) of promoters by the 5-methyl cytosine DNA glycosylase or DEMETER (DME) is required for the uni-parental expression of imprinting genes in endosperm, which is essential for seed viability. The opinion that cytosine methylation is indispensible for normal plant development has been reinforced by using single or combinations of diverse loss-of-function mutants for DNA methyltransferases, DNA glycosylases, components involved in siRNA biogenesis and chromatin remodeling factors. Patterns of cytosine methylation in plants are usually faithfully maintained across organismal generations by the concerted action of epigenetic inheritance and progressive correction of strayed patterns. However, some variant methylation patterns may escape from being corrected and hence produce novel epialleles in the affected somatic cells. This, coupled with the unique property of plants to produce germline cells late during development, may enable the newly acquired epialleles to be inherited to future generations, which if visible to selection may contribute to adaptation and evolution.


Assuntos
Citosina/metabolismo , Metilação de DNA , DNA de Plantas/genética , DNA de Plantas/metabolismo , Desenvolvimento Vegetal , Plantas/genética , Animais , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Humanos
3.
J Genet Genomics ; 36(9): 519-28, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19782953

RESUMO

A polyploid organism by possessing more than two sets of chromosomes from one species (autopolyploidy) or two or more species (allopolyploidy) is known to have evolutionary advantages. However, by what means a polyploid accommodates increased genetic dosage or divergent genomes (allopolyploidy) in one cell nucleus and cytoplasm constitutes an enormous challenge. Recent years have witnessed efforts and progress in exploring the possible mechanisms by which these seemingly intangible hurdles of polyploidy may be ameliorated or eventually overcome. In particular, the documentation of rapid and extensive non-Mendelian genetic and epigenetic changes that often accompany nascent polyploidy is revealing: the resulting non-additive and novel gene expression at global, regional and local levels, and timely restoration of meiotic chromosomal behavior towards bivalent pairing and disomic inheritance may ensure rapid establishment and stabilization as well as its long-term evolutionary success. Further elucidation on these novel mechanisms underpinning polyploidy will promote our understanding on fundamental issues in evolutionary biology and in our manipulation capacities in future genetic improvement of important crops that are currently polyploids in genomic constitution. This review is intended to provide an updated discussion on these interesting and important issues within the scope of a specific yet one of the most important plant groups-polyploid wheat and its related species.


Assuntos
Evolução Molecular , Genoma de Planta , Poliploidia , Triticum/genética , Cromossomos de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...