Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 133(14): 144110, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20949990

RESUMO

In this letter we evaluate the accuracy of the first reaction method (FRM) as commonly used to reduce the computational complexity of mesoscale Monte Carlo simulations of geminate recombination and the performance of organic photovoltaic devices. A wide range of carrier mobilities, degrees of energetic disorder, and applied electric field are considered. For the ranges of energetic disorder relevant for most polyfluorene, polythiophene, and alkoxy poly(phenylene vinylene) materials used in organic photovoltaics, the geminate separation efficiency predicted by the FRM agrees with the exact model to better than 2%. We additionally comment on the effects of equilibration on low-field geminate separation efficiency, and in doing so emphasize the importance of the energy at which geminate carriers are created upon their subsequent behavior.

2.
Phys Chem Chem Phys ; 12(4): 844-51, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20066369

RESUMO

This paper presents the first examination of the potential for bicontinuous structures such as the gyroid structure to produce high efficiency solar cells based on conjugated polymers. The solar cell characteristics are predicted by a simulation model that shows how the morphology influences device performance through integration of all the processes occurring in organic photocells in a specified morphology. In bicontinuous phases, the surface defining the interface between the electron and hole transporting phases divides the volume into two disjoint subvolumes. Exciton loss is reduced because the interface at which charge separation occurs permeates the device so excitons have only a short distance to reach the interface. As each of the component phases is connected, charges will be able to reach the electrodes more easily. In simulations of the current-voltage characteristics of organic cells with gyroid, disordered blend and vertical rod (rods normal to the electrodes) morphologies, we find that gyroids have a lower than anticipated performance advantage over disordered blends, and that vertical rods are superior. These results are explored thoroughly, with geminate recombination, i.e. recombination of charges originating from the same exciton, identified as the primary source of loss. Thus, if an appropriate materials choice could reduce geminate recombination, gyroids show great promise for future research and applications.

3.
J Phys Chem B ; 114(1): 36-41, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20000370

RESUMO

We developed a model system for blend polymers with electron-donating and -accepting compounds. It is found that the optimal energy conversion efficiency can be achieved when the feature size is around 10 nm. The first reaction method is used to describe the key processes (e.g., the generation, the diffusion, the dissociation at the interface for the excitons, the drift, the injection from the electrodes, and the collection by the electrodes for the charge carries) in the organic solar cell by the dynamic Monte Carlo simulation. Our simulations indicate that a 5% power conversion efficiency (PCE) is reachable with an optimum combination of charge mobility and morphology. The parameters used in this model study correspond to a blend of novel polymers (bis(thienylenevinylene)-substituted polythiophene and poly(perylene diimide-alt-dithienothiophene)), which features a broad absorption and a high mobility. The I-V curves are well-reproduced by our simulations, and the PCE for the polymer blend can reach up to 2.2%, which is higher than the experimental value (>1%), one of the best available experimental results up to now for the all-polymer solar cells. In addition, the dependency of PCE on the charge mobility and the material structure are also investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...