Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Cell Biol ; 32(6): 501-512, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35181197

RESUMO

Mass cytometry (MC) is a recent technology that pairs plasma-based ionization of cells in suspension with time-of-flight (TOF) mass spectrometry to sensitively quantify the single-cell abundance of metal-isotope-tagged affinity reagents to key proteins, RNA, and peptides. Given the ability to multiplex readouts (~50 per cell) and capture millions of cells per experiment, MC offers a robust way to assay rare, transitional cell states that are pertinent to human development and disease. Here, we review MC approaches that let us probe the dynamics of cellular regulation across multiple conditions and sample types in a single experiment. Additionally, we discuss current limitations and future extensions of MC as well as computational tools commonly used to extract biological insight from single-cell proteomic datasets.


Assuntos
Isótopos , Proteômica , Humanos , Proteínas/química , Proteômica/métodos
2.
Life Sci Alliance ; 2(6)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31704709

RESUMO

TNFα-related apoptosis-inducing ligand (TRAIL), specifically initiates programmed cell death, but often fails to eradicate all cells, making it an ineffective therapy for cancer. This fractional killing is linked to cellular variation that bulk assays cannot capture. Here, we quantify the diversity in cellular signaling responses to TRAIL, linking it to apoptotic frequency across numerous cell systems with single-cell mass cytometry (CyTOF). Although all cells respond to TRAIL, a variable fraction persists without apoptotic progression. This cell-specific behavior is nonheritable where both the TRAIL-induced signaling responses and frequency of apoptotic resistance remain unaffected by prior exposure. The diversity of signaling states upon exposure is correlated to TRAIL resistance. Concomitantly, constricting the variation in signaling response with kinase inhibitors proportionally decreases TRAIL resistance. Simultaneously, TRAIL-induced de novo translation in resistant cells, when blocked by cycloheximide, abrogated all TRAIL resistance. This work highlights how cell signaling diversity, and subsequent translation response, relates to nonheritable fractional escape from TRAIL-induced apoptosis. This refined view of TRAIL resistance provides new avenues to study death ligands in general.


Assuntos
Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Células HeLa , Humanos , Ligantes , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais/fisiologia , Análise de Célula Única/métodos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...