Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 653: 337-340, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28587902

RESUMO

Paclitaxel induces peripheral neuropathy, which is dose-limiting and results in loss of quality of life. Therefore, the prevention and treatment of paclitaxel-induced peripheral neuropathy are major concerns in clinical cancer therapy. However, the detailed mechanisms have not been fully elucidated. It has recently been reported that allelic variability in the Charcot-Marie-Tooth disease (CMT) genes, mitofusin 2 (MFN2), Rho guanine nucleotide exchange factor 10 (ARHGEF10), and periaxin (PRX), affected paclitaxel-induced peripheral neuropathy in clinical cases. Therefore, we hypothesized that paclitaxel may induce peripheral neuropathy due to changes in Mfn2, Arhgef10, and Prx mRNA expression. Paclitaxel (6mg/kg) was administered intraperitoneally, on two consecutive days per week for 4 weeks in rats. Paclitaxel-induced peripheral neuropathy was measured by the von Frey test and acetone test, mechanical allodynia, and cold hyperalgesia, respectively, on days 0, 3, 10, 17, and 24. Mfn2, Arhgef10, and Prx mRNA expression in the spinal cord were analyzed by qRT-PCR on days 3 and 24. Paclitaxel induced mechanical allodynia from days 17-24, but did not induce cold hyperalgesia. In addition, paclitaxel reduced Mfn2 mRNA expression, but not Arhgef10 or Prx mRNA expression, on days 3 and 24. In addition, Mfn2 mRNA level was decreased before the appearance of mechanical allodynia. The results of the present study suggest that a reduction in Mfn2 mRNA expression contributes to paclitaxel-induced mechanical allodynia.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Hiperalgesia/induzido quimicamente , Proteínas de Membrana/efeitos dos fármacos , Proteínas Mitocondriais/efeitos dos fármacos , Paclitaxel/farmacologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/efeitos adversos , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , GTP Fosfo-Hidrolases , Masculino , Paclitaxel/administração & dosagem , Paclitaxel/efeitos adversos , Ratos , Ratos Sprague-Dawley
2.
Psychopharmacology (Berl) ; 234(12): 1853-1869, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28332006

RESUMO

Increased risk of attention-deficit/hyperactivity disorder (AD/HD) is partly associated with the early developmental exposure to nicotine in tobacco smoke. Emerging reports link tobacco smoke exposure or prenatal nicotine exposure (PNE) with AD/HD-like behaviors in rodent models. We have previously reported that PNE induces cognitive behavioral deficits in offspring and decreases the contents of dopamine (DA) and its turnover in the prefrontal cortex (PFC) of offspring It is well known that the dysfunction of DAergic system in the brain is one of the core factors in the pathophysiology of AD/HD. Therefore, we examined whether the effects of PNE on the DAergic system underlie the AD/HD-related behavioral changes in mouse offspring. PNE reduced the release of DA in the medial PFC (mPFC) in mouse offspring. PNE reduced the number of tyrosine hydroxylase (TH)-positive varicosities in the mPFC and in the core as well as the shell of nucleus accumbens, but not in the striatum. PNE also induced behavioral deficits in cliff avoidance, object-based attention, and sensorimotor gating in offspring. These behavioral deficits were attenuated by acute treatment with atomoxetine (3 mg/kg, s.c.) or partially attenuated by acute treatment with MPH (1 mg/kg, s.c.). Taken together, our findings support the notion that PNE induces neurobehavioral abnormalities in mouse offspring by disrupting the DAergic system and improve our understanding about the incidence of AD/HD in children whose mothers were exposed to nicotine during their pregnancy.


Assuntos
Cloridrato de Atomoxetina/toxicidade , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Dopamina/metabolismo , Nicotina/toxicidade , Córtex Pré-Frontal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Inibidores da Captação Adrenérgica/toxicidade , Animais , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/psicologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA