Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4667, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537190

RESUMO

Warming shifts the thermal optimum of net photosynthesis (ToptA) to higher temperatures. However, our knowledge of this shift is mainly derived from seedlings grown in greenhouses under ambient atmospheric carbon dioxide (CO2) conditions. It is unclear whether shifts in ToptA of field-grown trees will keep pace with the temperatures predicted for the 21st century under elevated atmospheric CO2 concentrations. Here, using a whole-ecosystem warming controlled experiment under either ambient or elevated CO2 levels, we show that ToptA of mature boreal conifers increased with warming. However, shifts in ToptA did not keep pace with warming as ToptA only increased by 0.26-0.35 °C per 1 °C of warming. Net photosynthetic rates estimated at the mean growth temperature increased with warming in elevated CO2 spruce, while remaining constant in ambient CO2 spruce and in both ambient CO2 and elevated CO2 tamarack with warming. Although shifts in ToptA of these two species are insufficient to keep pace with warming, these boreal conifers can thermally acclimate photosynthesis to maintain carbon uptake in future air temperatures.


Assuntos
Ecossistema , Temperatura Alta , Larix , Picea , Aquecimento Global , Picea/crescimento & desenvolvimento , Picea/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese , Larix/crescimento & desenvolvimento , Larix/metabolismo
2.
Natl Sci Rev ; 8(2): nwaa145, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34691569

RESUMO

Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land-atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean. Summing up NEE from all regions, we obtained a global 'bottom-up' NEE for net land anthropogenic CO2 uptake of -2.2 ± 0.6 PgC yr-1 consistent with the independent top-down NEE from the global atmospheric carbon budget during 2000-2009. This estimate is so far the most comprehensive global bottom-up carbon budget accounting, which set up an important milestone for global carbon-cycle studies. By decomposing NEE into component fluxes, we found that global soil heterotrophic respiration amounts to a source of CO2 of 39 PgC yr-1 with an interquartile of 33-46 PgC yr-1-a much smaller portion of net primary productivity than previously reported.

4.
Tree Physiol ; 39(4): 556-572, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668859

RESUMO

We quantified seasonal CO2 assimilation capacities for seven dominant vascular species in a wet boreal forest peatland then applied data to a land surface model parametrized to the site (ELM-SPRUCE) to test if seasonality in photosynthetic parameters results in differences in simulated plant responses to elevated CO2 and temperature. We collected seasonal leaf-level gas exchange, nutrient content and stand allometric data from the field-layer community (i.e., Maianthemum trifolium (L.) Sloboda), understory shrubs (Rhododendron groenlandicum (Oeder) Kron and Judd, Chamaedaphne calyculata (L.) Moench., Kalmia polifolia Wangenh. and Vaccinium angustifolium Alton.) and overstory trees (Picea mariana (Mill.) B.S.P. and Larix laricina (Du Roi) K. Koch). We found significant interspecific seasonal differences in specific leaf area, nitrogen content (by area; Na) and photosynthetic parameters (i.e., maximum rates of Rubisco carboxylation (Vcmax25°C), electron transport (Jmax25°C) and dark respiration (Rd25°C)), but minimal correlation between foliar Na and Vcmax25°C, Jmax25°C or Rd25°C, which illustrates that nitrogen alone is not a good correlate for physiological processes such as Rubisco activity that can change seasonally in this system. ELM-SPRUCE was sensitive to the introduction of observed interspecific seasonality in Vcmax25°C, Jmax25°C and Rd25°C, leading to simulated enhancement of net primary production (NPP) using seasonally dynamic parameters as compared with use of static parameters. This pattern was particularly pronounced under simulations with higher temperature and elevated CO2, suggesting a key hypothesis to address with future empirical or observational studies as climate changes. Inclusion of species-specific seasonal photosynthetic parameters should improve estimates of boreal ecosystem-level NPP, especially if impacts of seasonal physiological ontogeny can be separated from seasonal thermal acclimation.


Assuntos
Asparagaceae/fisiologia , Dióxido de Carbono/fisiologia , Ericaceae/fisiologia , Larix/fisiologia , Picea/fisiologia , Aclimatação , Mudança Climática , Ecossistema , Transporte de Elétrons , Nitrogênio/análise , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Estações do Ano , Taiga , Temperatura , Árvores
5.
Sci Rep ; 5: 17445, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26612423

RESUMO

How soil microbes assimilate carbon-C, nitrogen-N, phosphorus-P, and sulfur-S is fundamental for understanding nutrient cycling in terrestrial ecosystems. We compiled a global database of C, N, P, and S concentrations in soils and microbes and developed relationships between them by using a power function model. The C:N:P:S was estimated to be 287:17:1:0.8 for soils, and 42:6:1:0.4 for microbes. We found a convergence of the relationships between elements in soils and in soil microbial biomass across C, N, P, and S. The element concentrations in soil microbial biomass follow a homeostatic regulation curve with soil element concentrations across C, N, P and S, implying a unifying mechanism of microbial assimilating soil elements. This correlation explains the well-constrained C:N:P:S stoichiometry with a slightly larger variation in soils than in microbial biomass. Meanwhile, it is estimated that the minimum requirements of soil elements for soil microbes are 0.8 mmol C Kg(-1) dry soil, 0.1 mmol N Kg(-1) dry soil, 0.1 mmol P Kg(-1) dry soil, and 0.1 mmol S Kg(-1) dry soil, respectively. These findings provide a mathematical explanation of element imbalance in soils and soil microbial biomass, and offer insights for incorporating microbial contribution to nutrient cycling into Earth system models.


Assuntos
Carbono/metabolismo , Modelos Estatísticos , Nitrogênio/metabolismo , Fósforo/metabolismo , Microbiologia do Solo , Enxofre/metabolismo , Biomassa , Carbono/química , Ecossistema , Fenômenos Microbiológicos , Nitrogênio/química , Fósforo/química , Análise de Regressão , Solo/química , Enxofre/química
6.
Tree Physiol ; 31(6): 669-79, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21743059

RESUMO

A variety of thermal approaches are used to estimate sap flux density in stems of woody plants. Models have proved valuable tools for interpreting the behavior of heat pulse, heat balance and heat field deformation techniques, but have seldom been used to describe heat transfer dynamics for the heat dissipation method. Therefore, to better understand the behavior of heat dissipation probes, a model was developed that takes into account the thermal properties of wood, the physical dimensions and thermal characteristics of the probes, and the conductive and convective heat transfer that occurs due to water flow in the sapwood. Probes were simulated as aluminum tubes 20 mm in length and 2 mm in diameter, whereas sapwood, heartwood and bark each had a density and water fraction that determined their thermal properties. Base simulations assumed a constant sap flux density with sapwood depth and no wounding or physical disruption of xylem beyond the 2 mm diameter hole drilled for probe installation. Simulations across a range of sap flux densities showed that the dimensionless quantity k [defined as (ΔT(m) -ΔT)/ΔT, where ΔT(m) is the temperature differential (ΔT) between the heated and unheated probe under zero-flow conditions] was dependent on the thermal conductivity of the sapwood. The relationship between sap flux density and k was also sensitive to radial gradients in sap flux density and to xylem disruption near the probe. Monte Carlo analysis in which 1000 simulations were conducted while simultaneously varying thermal conductivity and wound diameter revealed that sap flux density and k showed considerable departure from the original calibration equation used with this technique. The departure was greatest for variation in sap flux density typical of ring-porous species. Depending on the specific combination of thermal conductivity and wound diameter, use of the original calibration equation resulted in an 81% under- to 48% overestimation of sap flux density at modest flux rates. Future studies should verify these simulations and assess their utility in estimating sap flux density for this widely used technique.


Assuntos
Modelos Biológicos , Árvores/fisiologia , Madeira/fisiologia , Xilema/fisiologia , Transporte Biológico , Método de Monte Carlo , Casca de Planta/fisiologia , Caules de Planta/fisiologia , Transpiração Vegetal , Temperatura , Água/fisiologia
8.
Environ Manage ; 33(4): 507-18, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15453404

RESUMO

Measurement of the change in soil carbon that accompanies a change in land use (e.g., forest to agriculture) or management (e.g., conventional tillage to no-till) can be complex and expensive, may require reference plots, and is subject to the variability of statistical sampling and short-term variability in weather. In this paper, we develop Carbon Management Response (CMR) curves that could be used as an alternative to in situ measurements. The CMR curves developed here are based on quantitative reviews of existing global analyses and field observations of changes in soil carbon. The curves show mean annual rates of soil carbon change, estimated time to maximum rates of change, and estimated time to a new soil carbon steady state following the initial change in management. We illustrate how CMR curves could be used in a carbon accounting framework while effectively addressing a number of potential policy issues commonly associated with carbon accounting. We find that CMR curves provide a transparent means to account for changes in soil carbon accumulation and loss rates over time, and also provide empirical relationships that might be used in the development or validation of ecological or Earth systems models.


Assuntos
Carbono/análise , Carbono/metabolismo , Modelos Teóricos , Solo , Agricultura , Meio Ambiente , Previsões , Fatores de Tempo , Árvores
9.
Tree Physiol ; 20(8): 511-518, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12651431

RESUMO

Canopy transpiration and forest water use are frequently estimated as the product of sap velocity and cross-sectional sapwood area. Few studies, however, have considered whether radial variation in sap velocity and the proportion of sapwood active in water transport are significant sources of uncertainty in the extrapolation process. Therefore, radial profiles of sap velocity were examined as a function of stem diameter and sapwood thickness for yellow-poplar (Liriodendron tulipifera L.) trees growing on two adjacent watersheds in eastern Tennessee. The compensation heat pulse velocity technique was used to quantify sap velocity at four equal-area depths in 20 trees that ranged in stem diameter from 15 to 69 cm, and in sapwood thickness from 2.1 to 14.8 cm. Sap velocity was highly dependent on the depth of probe insertion into the sapwood. Rates of sap velocity were greatest for probes located in the two outer sapwood annuli (P1 and P2) and lowest for probes in closest proximity to the heartwood (P3 and P4). Relative sap velocities averaged 0.98 at P1, 0.66 at P2, 0.41 at P3 and 0.35 at P4. Tree-specific sap velocities measured at each of the four probe positions, divided by the maximum sap velocity measured (usually at P1 or P2), indicated that the fraction of sapwood functional in water transport (f(S)) varied between 0.49 and 0.96. There was no relationship between f(S) and sapwood thickness, or between f(S) and stem diameter. The fraction of functional sapwood averaged 0.66 +/- 0.13 for trees on which radial profiles were determined. No significant depth-related differences were observed for sapwood density, which averaged 469 kg m(-3) across all four probe positions. There was, however, a significant decline in sapwood water content between the two outer probe positions (1.04 versus 0.89 kg kg(-1)). This difference was not sufficient to account for the observed radial variation in sap velocity. A Monte-Carlo analysis indicated that the standard error in estimated mean f(S) declined rapidly with increasing sample size. At n = 10, the coefficient of variation in mean f(S) was 7% and at n = 15 it was slightly less than 5%. These observations indicate that radial variation in sap velocity is an important, albeit often overlooked, source of uncertainty in the scaling process. Failure to recognize that not all sapwood is functional in water transport will introduce systematic bias into estimates of both tree and stand water use. Future studies should devise sampling strategies for assessing radial variation in sap velocity and such strategies should be used to identify the magnitude of this variation in a range of non-, diffuse- and ring-porous trees.

10.
Ecol Appl ; 2(1): 55-70, 1992 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27759192

RESUMO

As regional and global scales become more important to ecologists, methods must be developed for the application of existing fine-scale knowledge to predict coarser-scale ecosystem properties. This generally involves some form of model in which fine-scale components are aggregated. This aggregation is necessary to avoid the cumulative error associated with the estimation of a large number of parameters. However, aggregation can itself produce errors that arise because of the variation among the aggregated components. The statistical expectation operator can be used as a rigorous method for translating fine-scale relationships to coarser scales without aggregation errors. Unfortunately this method is too cumbersome to be applied in most cases, and alternative methods must be used. These alternative methods are typically partial corrections for the variation in only a few of the fine-scale attributes. Therefore, for these methods to be effective, the attributes that are the most severe sources of error must be identified a priori. We present a procedure for making these identifications based on a Monte Carlo sampling of the fine-scale attributes. We then present four methods of translating fine-scale knowledge so it can be applied at coarser scales: (1) partial transformations using the expectation operator, (2) moment expansions, (3) partitioning, and (4) calibration. These methods should make it possible to apply the vast store of fine-scale ecological knowledge to model coarser-scale attributes of ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...