Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 175(3): 1292-302, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19700746

RESUMO

Proliferative breast lesions, such as simple ductal hyperplasia (SH) and atypical ductal hyperplasia (ADH), are candidate precursors to ductal carcinoma in situ (DCIS) and invasive cancer. To better understand the relationship of breast lesions to more advanced disease, we used microdissection and DNA microarrays to profile the gene expression of patient-matched histologically normal (HN), ADH, and DCIS from 12 patients with estrogen receptor positive sporadic breast cancer. SH were profiled from a subset of cases. We found 837 differentially expressed genes between DCIS-HN and 447 between ADH-HN, with >90% of the ADH-HN genes also present among the DCIS-HN genes. Only 61 genes were identified between ADH-DCIS. Expression differences were reproduced in an independent cohort of patient-matched lesions by quantitative real-time PCR. Many breast cancer-related genes and pathways were dysregulated in ADH and maintained in DCIS. Particularly, cell adhesion and extracellular matrix interactions were overrepresented. Focal adhesion was the top pathway in each gene set. We conclude that ADH and DCIS share highly similar gene expression and are distinct from HN. In contrast, SH appear more similar to HN. These data provide genetic evidence that ADH (but not SH) are often precursors to cancer and suggest cancer-related genetic changes, particularly adhesion and extracellular matrix pathways, are dysregulated before invasion and even before malignancy is apparent. These findings could lead to novel risk stratification, prevention, and treatment approaches.


Assuntos
Neoplasias da Mama/metabolismo , Mama/metabolismo , Carcinoma Intraductal não Infiltrante/metabolismo , Adesão Celular/genética , Matriz Extracelular/genética , Regulação Neoplásica da Expressão Gênica , Idoso , Idoso de 80 Anos ou mais , Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Hiperplasia , Pessoa de Meia-Idade , Transdução de Sinais/genética
2.
BMC Cancer ; 8: 68, 2008 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-18325103

RESUMO

BACKGROUND: CDKN1C (also known as p57KIP2) is a cyclin-dependent kinase inhibitor previously implicated in several types of human cancer. Its family members (CDKN1A/p21CIP1 and B/p27KIP1) have been implicated in breast cancer, but information about CDKN1C's role is limited. We hypothesized that decreased CDKN1C may be involved in human breast carcinogenesis in vivo. METHODS: We determined rates of allele imbalance or loss of heterozygosity (AI/LOH) in CDKN1C, using an intronic polymorphism, and in the surrounding 11p15.5 region in 82 breast cancers. We examined the CDKN1C mRNA level in 10 cancers using quantitative real-time PCR (qPCR), and the CDKN1C protein level in 20 cancers using immunohistochemistry (IHC). All samples were obtained using laser microdissection. Data were analyzed using standard statistical tests. RESULTS: AI/LOH at 11p15.5 occurred in 28/73 (38%) informative cancers, but CDKN1C itself underwent AI/LOH in only 3/16 (19%) cancers (p = ns). In contrast, CDKN1C mRNA levels were reduced in 9/10 (90%) cancers (p < 0.0001), ranging from 2-60% of paired normal epithelium. Similarly, CDKN1C protein staining was seen in 19/20 (95%) cases' normal epithelium but in only 7/14 (50%) cases' CIS (p < 0.004) and 5/18 (28%) cases' IC (p < 0.00003). The reduction appears primarily due to loss of CDKN1C expression from myoepithelial layer cells, which stained intensely in 17/20 (85%) normal lobules, but in 0/14 (0%) CIS (p < 0.00001). In contrast, luminal cells displayed less intense, focal staining fairly consistently across histologies. Decreased CDKN1C was not clearly associated with tumor grade, histology, ER, PR or HER2 status. CONCLUSION: CDKN1C is expressed in normal epithelium of most breast cancer cases, mainly in the myothepithelial layer. This expression decreases, at both the mRNA and protein level, in the large majority of breast cancers, and does not appear to be mediated by AI/LOH at the gene. Thus, CDKN1C may be a breast cancer tumor suppressor.


Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Genes Supressores de Tumor , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Lobular/genética , Feminino , Humanos , Perda de Heterozigosidade , Pessoa de Meia-Idade , Polimorfismo Genético
3.
Int J Cancer ; 122(7): 1557-66, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18058819

RESUMO

Normal-appearing epithelium of cancer patients can harbor occult genetic abnormalities. Data comprehensively comparing gene expression between histologically normal breast epithelium of breast cancer patients and cancer-free controls are limited. The present study compares global gene expression between these groups. We performed microarrays using RNA from microdissected histologically normal terminal ductal-lobular units (TDLU) from 2 groups: (i) cancer normal (CN) (TDLUs adjacent to untreated ER+ breast cancers (n = 14)) and (ii) reduction mammoplasty (RM) (TDLUs of age-matched women without breast disease (n = 15)). Cyber-T identified differentially expressed genes. Quantitative RT-PCR (qRT-PCR), immunohistochemistry (IHC), and comparison to independent microarray data including 6 carcinomas in situ (CIS), validated the results. Gene ontology (GO), UniProt and published literature evaluated gene function. About 127 probesets, corresponding to 105 genes, were differentially expressed between CN and RM (p < 0.0009, corresponding to FDR <0.10). 104/127 (82%) probesets were also differentially expressed between CIS and RM, nearly always (102/104 (98%)) in the same direction as in CN vs. RM. Two-thirds of the 105 genes were implicated previously in carcinogenesis. Overrepresented functional groups included transcription, G-protein coupled and chemokine receptor activity, the MAPK cascade and immediate early genes. Most genes in these categories were under-expressed in CN vs. RM. We conclude that global gene expression abnormalities exist in normal epithelium of breast cancer patients and are also present in early cancers. Thus, cancer-related pathways may be perturbed in normal epithelium. These abnormalities could be markers of disease risk, occult disease, or the tissue's response to an existing tumor.


Assuntos
Neoplasias da Mama/química , Mama/química , Proteínas de Ciclo Celular/análise , Epitélio/química , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição/análise , Adulto , Biomarcadores Tumorais/análise , Mama/anatomia & histologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Epitélio/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Mamoplastia , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
J Mol Diagn ; 7(1): 57-64, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15681475

RESUMO

Combined use of microdissection and high-density oligonucleotide arrays is a powerful technique to study in vivo gene expression. Because microdissection generally yields ng quantities of RNA, RNA amplification is necessary but affects array results. We tested the reliability and reproducibility of oligonucleotide array data obtained from small sample amplified RNA isolated from primary tissues via laser capture microdissection, to determine whether gene expression measurements obtained under these now customary conditions are reliable and reproducible enough to detect authentic expression differences between clinical samples. We performed eight U133A Affymetrix GeneChip oligonucleotide array hybridizations using RNA isolated from a single normal human breast specimen: two standard and six small samples prepared using independent microdissections, RNA isolations, and amplifications. We then performed six array hybridizations using RNA obtained similarly from paired normal epithelium and ductal carcinoma in situ from three independent breast specimens. We determined reliability by analysis of hybridization quality metrics, and reproducibility by analysis of the number of more than twofold changed genes, linear regression, and principal components analysis. All amplified RNA generated good quality hybridizations. From the initial specimen, correlations between replicates (r = 0.96 to 0.99) and between small samples (r = 0.94 to 0.98) were high, and between standard and small samples (r = 0.84) were moderate. In contrast, in the three normal cancer pairs, the differences in gene expression were large among the normal samples, the ductal carcinoma in situ samples, and between normal and ductal carcinoma in situ within each pair. These differences were a much larger source of variability than the technical variability introduced by the processes of laser capture microdissection, small sample amplification, and array hybridization. Nanogram quantities of RNA isolated from primary tissue using laser-capture microdissection generates reliable and reproducible gene expression measurements. These measurements do not mirror those obtained using micrograms of RNA. Biological variability in gene expression between independent specimens, and between histologically distinct samples within a specimen, is greater than the technical variability associated with the procedures. Future studies of in vivo gene expression using this approach will identify functionally important differences within or between specimens.


Assuntos
Neoplasias da Mama/diagnóstico , Perfilação da Expressão Gênica/normas , Técnicas de Amplificação de Ácido Nucleico , RNA Neoplásico/análise , Neoplasias da Mama/genética , Feminino , Humanos , Lasers , Microdissecção , Análise de Sequência com Séries de Oligonucleotídeos/normas , RNA Neoplásico/isolamento & purificação , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...