Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5153, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886376

RESUMO

Despite decades of research, we still do not understand how spontaneous human seizures start and spread - especially at the level of neuronal microcircuits. In this study, we used laminar arrays of micro-electrodes to simultaneously record the local field potentials and multi-unit neural activities across the six layers of the neocortex during focal seizures in humans. We found that, within the ictal onset zone, the discharges generated during a seizure consisted of current sinks and sources only within the infra-granular and granular layers. Outside of the seizure onset zone, ictal discharges reflected current flow in the supra-granular layers. Interestingly, these patterns of current flow evolved during the course of the seizure - especially outside the seizure onset zone where superficial sinks and sources extended into the deeper layers. Based on these observations, a framework describing cortical-cortical dynamics of seizures is proposed with implications for seizure localization, surgical targeting, and neuromodulation techniques to block the generation and propagation of seizures.


Assuntos
Eletroencefalografia , Neocórtex , Convulsões , Humanos , Convulsões/fisiopatologia , Neocórtex/fisiopatologia , Neocórtex/fisiologia , Masculino , Adulto , Feminino , Adulto Jovem , Córtex Cerebral/fisiopatologia , Córtex Cerebral/fisiologia , Microeletrodos , Neurônios/fisiologia
2.
PLoS Biol ; 22(5): e3002622, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38814982

RESUMO

Combinatoric linguistic operations underpin human language processes, but how meaning is composed and refined in the mind of the reader is not well understood. We address this puzzle by exploiting the ubiquitous function of negation. We track the online effects of negation ("not") and intensifiers ("really") on the representation of scalar adjectives (e.g., "good") in parametrically designed behavioral and neurophysiological (MEG) experiments. The behavioral data show that participants first interpret negated adjectives as affirmative and later modify their interpretation towards, but never exactly as, the opposite meaning. Decoding analyses of neural activity further reveal significant above chance decoding accuracy for negated adjectives within 600 ms from adjective onset, suggesting that negation does not invert the representation of adjectives (i.e., "not bad" represented as "good"); furthermore, decoding accuracy for negated adjectives is found to be significantly lower than that for affirmative adjectives. Overall, these results suggest that negation mitigates rather than inverts the neural representations of adjectives. This putative suppression mechanism of negation is supported by increased synchronization of beta-band neural activity in sensorimotor areas. The analysis of negation provides a steppingstone to understand how the human brain represents changes of meaning over time.


Assuntos
Idioma , Humanos , Feminino , Masculino , Adulto , Adulto Jovem , Encéfalo/fisiologia , Magnetoencefalografia/métodos , Semântica , Linguística/métodos
3.
bioRxiv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38659750

RESUMO

Speech comprehension requires the human brain to transform an acoustic waveform into meaning. To do so, the brain generates a hierarchy of features that converts the sensory input into increasingly abstract language properties. However, little is known about how these hierarchical features are generated and continuously coordinated. Here, we propose that each linguistic feature is dynamically represented in the brain to simultaneously represent successive events. To test this 'Hierarchical Dynamic Coding' (HDC) hypothesis, we use time-resolved decoding of brain activity to track the construction, maintenance, and integration of a comprehensive hierarchy of language features spanning acoustic, phonetic, sub-lexical, lexical, syntactic and semantic representations. For this, we recorded 21 participants with magnetoencephalography (MEG), while they listened to two hours of short stories. Our analyses reveal three main findings. First, the brain incrementally represents and simultaneously maintains successive features. Second, the duration of these representations depend on their level in the language hierarchy. Third, each representation is maintained by a dynamic neural code, which evolves at a speed commensurate with its corresponding linguistic level. This HDC preserves the maintenance of information over time while limiting the interference between successive features. Overall, HDC reveals how the human brain continuously builds and maintains a language hierarchy during natural speech comprehension, thereby anchoring linguistic theories to their biological implementations.

4.
Cell Rep ; 43(3): 113847, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412098

RESUMO

The ability to compose successive words into a meaningful phrase is a characteristic feature of human cognition, yet its neural mechanisms remain incompletely understood. Here, we analyze the cortical mechanisms of semantic composition using magnetoencephalography (MEG) while participants read one-word, two-word, and five-word noun phrases and compared them with a subsequent image. Decoding of MEG signals revealed three processing stages. During phrase comprehension, the representation of individual words was sustained for a variable duration depending on phrasal context. During the delay period, the word code was replaced by a working-memory code whose activation increased with semantic complexity. Finally, the speed and accuracy of retrieval depended on semantic complexity and was faster for surface than for deep semantic properties. In conclusion, we propose that the brain initially encodes phrases using factorized dimensions for successive words but later compresses them in working memory and requires a period of decompression to access them.


Assuntos
Memória de Curto Prazo , Semântica , Humanos , Compreensão/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/fisiologia
5.
Sci Data ; 10(1): 862, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049487

RESUMO

The "MEG-MASC" dataset provides a curated set of raw magnetoencephalography (MEG) recordings of 27 English speakers who listened to two hours of naturalistic stories. Each participant performed two identical sessions, involving listening to four fictional stories from the Manually Annotated Sub-Corpus (MASC) intermixed with random word lists and comprehension questions. We time-stamp the onset and offset of each word and phoneme in the metadata of the recording, and organize the dataset according to the 'Brain Imaging Data Structure' (BIDS). This data collection provides a suitable benchmark to large-scale encoding and decoding analyses of temporally-resolved brain responses to speech. We provide the Python code to replicate several validations analyses of the MEG evoked responses such as the temporal decoding of phonetic features and word frequency. All code and MEG, audio and text data are publicly available to keep with best practices in transparent and reproducible research.


Assuntos
Magnetoencefalografia , Percepção da Fala , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Magnetoencefalografia/métodos , Fala , Percepção da Fala/fisiologia
6.
J Neurosci ; 43(29): 5350-5364, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37217308

RESUMO

A sentence is more than the sum of its words: its meaning depends on how they combine with one another. The brain mechanisms underlying such semantic composition remain poorly understood. To shed light on the neural vector code underlying semantic composition, we introduce two hypotheses: (1) the intrinsic dimensionality of the space of neural representations should increase as a sentence unfolds, paralleling the growing complexity of its semantic representation; and (2) this progressive integration should be reflected in ramping and sentence-final signals. To test these predictions, we designed a dataset of closely matched normal and jabberwocky sentences (composed of meaningless pseudo words) and displayed them to deep language models and to 11 human participants (5 men and 6 women) monitored with simultaneous MEG and intracranial EEG. In both deep language models and electrophysiological data, we found that representational dimensionality was higher for meaningful sentences than jabberwocky. Furthermore, multivariate decoding of normal versus jabberwocky confirmed three dynamic patterns: (1) a phasic pattern following each word, peaking in temporal and parietal areas; (2) a ramping pattern, characteristic of bilateral inferior and middle frontal gyri; and (3) a sentence-final pattern in left superior frontal gyrus and right orbitofrontal cortex. These results provide a first glimpse into the neural geometry of semantic integration and constrain the search for a neural code of linguistic composition.SIGNIFICANCE STATEMENT Starting from general linguistic concepts, we make two sets of predictions in neural signals evoked by reading multiword sentences. First, the intrinsic dimensionality of the representation should grow with additional meaningful words. Second, the neural dynamics should exhibit signatures of encoding, maintaining, and resolving semantic composition. We successfully validated these hypotheses in deep neural language models, artificial neural networks trained on text and performing very well on many natural language processing tasks. Then, using a unique combination of MEG and intracranial electrodes, we recorded high-resolution brain data from human participants while they read a controlled set of sentences. Time-resolved dimensionality analysis showed increasing dimensionality with meaning, and multivariate decoding allowed us to isolate the three dynamical patterns we had hypothesized.


Assuntos
Encéfalo , Idioma , Masculino , Humanos , Feminino , Encéfalo/fisiologia , Semântica , Linguística , Mapeamento Encefálico/métodos , Leitura , Imageamento por Ressonância Magnética/métodos
8.
Nat Hum Behav ; 7(3): 430-441, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864133

RESUMO

Considerable progress has recently been made in natural language processing: deep learning algorithms are increasingly able to generate, summarize, translate and classify texts. Yet, these language models still fail to match the language abilities of humans. Predictive coding theory offers a tentative explanation to this discrepancy: while language models are optimized to predict nearby words, the human brain would continuously predict a hierarchy of representations that spans multiple timescales. To test this hypothesis, we analysed the functional magnetic resonance imaging brain signals of 304 participants listening to short stories. First, we confirmed that the activations of modern language models linearly map onto the brain responses to speech. Second, we showed that enhancing these algorithms with predictions that span multiple timescales improves this brain mapping. Finally, we showed that these predictions are organized hierarchically: frontoparietal cortices predict higher-level, longer-range and more contextual representations than temporal cortices. Overall, these results strengthen the role of hierarchical predictive coding in language processing and illustrate how the synergy between neuroscience and artificial intelligence can unravel the computational bases of human cognition.


Assuntos
Inteligência Artificial , Fala , Humanos , Fala/fisiologia , Percepção Auditiva/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Lobo Temporal/fisiologia
9.
Nat Commun ; 13(1): 6606, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329058

RESUMO

Speech consists of a continuously-varying acoustic signal. Yet human listeners experience it as sequences of discrete speech sounds, which are used to recognise discrete words. To examine how the human brain appropriately sequences the speech signal, we recorded two-hour magnetoencephalograms from 21 participants listening to short narratives. Our analyses show that the brain continuously encodes the three most recently heard speech sounds in parallel, and maintains this information long past its dissipation from the sensory input. Each speech sound representation evolves over time, jointly encoding both its phonetic features and the amount of time elapsed since onset. As a result, this dynamic neural pattern encodes both the relative order and phonetic content of the speech sequence. These representations are active earlier when phonemes are more predictable, and are sustained longer when lexical identity is uncertain. Our results show how phonetic sequences in natural speech are represented at the level of populations of neurons, providing insight into what intermediary representations exist between the sensory input and sub-lexical units. The flexibility in the dynamics of these representations paves the way for further understanding of how such sequences may be used to interface with higher order structure such as lexical identity.


Assuntos
Percepção da Fala , Humanos , Percepção da Fala/fisiologia , Fonética , Fala/fisiologia , Percepção Auditiva , Mapeamento Encefálico
10.
Sci Rep ; 12(1): 16327, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175483

RESUMO

Deep language algorithms, like GPT-2, have demonstrated remarkable abilities to process text, and now constitute the backbone of automatic translation, summarization and dialogue. However, whether these models encode information that relates to human comprehension still remains controversial. Here, we show that the representations of GPT-2 not only map onto the brain responses to spoken stories, but they also predict the extent to which subjects understand the corresponding narratives. To this end, we analyze 101 subjects recorded with functional Magnetic Resonance Imaging while listening to 70 min of short stories. We then fit a linear mapping model to predict brain activity from GPT-2's activations. Finally, we show that this mapping reliably correlates ([Formula: see text]) with subjects' comprehension scores as assessed for each story. This effect peaks in the angular, medial temporal and supra-marginal gyri, and is best accounted for by the long-distance dependencies generated in the deep layers of GPT-2. Overall, this study shows how deep language models help clarify the brain computations underlying language comprehension.


Assuntos
Idioma , Semântica , Alanina Transaminase , Algoritmos , Encéfalo/diagnóstico por imagem , Compreensão , Humanos
11.
Commun Biol ; 5(1): 134, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173264

RESUMO

Deep learning algorithms trained to predict masked words from large amount of text have recently been shown to generate activations similar to those of the human brain. However, what drives this similarity remains currently unknown. Here, we systematically compare a variety of deep language models to identify the computational principles that lead them to generate brain-like representations of sentences. Specifically, we analyze the brain responses to 400 isolated sentences in a large cohort of 102 subjects, each recorded for two hours with functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). We then test where and when each of these algorithms maps onto the brain responses. Finally, we estimate how the architecture, training, and performance of these models independently account for the generation of brain-like representations. Our analyses reveal two main findings. First, the similarity between the algorithms and the brain primarily depends on their ability to predict words from context. Second, this similarity reveals the rise and maintenance of perceptual, lexical, and compositional representations within each cortical region. Overall, this study shows that modern language algorithms partially converge towards brain-like solutions, and thus delineates a promising path to unravel the foundations of natural language processing.


Assuntos
Encéfalo , Processamento de Linguagem Natural , Algoritmos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Humanos , Idioma , Imageamento por Ressonância Magnética
12.
Neuroimage ; 247: 118746, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34875382

RESUMO

The ability to process and respond to external input is critical for adaptive behavior. Why, then, do neural and behavioral responses vary across repeated presentations of the same sensory input? Ongoing fluctuations of neuronal excitability are currently hypothesized to underlie the trial-by-trial variability in sensory processing. To test this, we capitalized on intracranial electrophysiology in neurosurgical patients performing an auditory discrimination task with visual cues: specifically, we examined the interaction between prestimulus alpha oscillations, excitability, task performance, and decoded neural stimulus representations. We found that strong prestimulus oscillations in the alpha+ band (i.e., alpha and neighboring frequencies), rather than the aperiodic signal, correlated with a low excitability state, indexed by reduced broadband high-frequency activity. This state was related to slower reaction times and reduced neural stimulus encoding strength. We propose that the alpha+ rhythm modulates excitability, thereby resulting in variability in behavior and sensory representations despite identical input.


Assuntos
Ondas Encefálicas/fisiologia , Estimulação Luminosa/métodos , Adulto , Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Discriminação Psicológica/fisiologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia , Feminino , Humanos , Estudos Longitudinais , Masculino , Tempo de Reação , Percepção Visual/fisiologia
13.
J Neurosci ; 41(34): 7224-7233, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-33811150

RESUMO

The human brain continuously processes streams of visual input. Yet, a single image typically triggers neural responses that extend beyond 1s. To understand how the brain encodes and maintains successive images, we analyzed with electroencephalography the brain activity of human subjects while they watched ∼5000 visual stimuli presented in fast sequences. First, we confirm that each stimulus can be decoded from brain activity for ∼1s, and we demonstrate that the brain simultaneously represents multiple images at each time instant. Second, we source localize the corresponding brain responses in the expected visual hierarchy and show that distinct brain regions represent, at each time instant, different snapshots of past stimulations. Third, we propose a simple framework to further characterize the dynamical system of these traveling waves. Our results show that a chain of neural circuits, which each consist of (1) a hidden maintenance mechanism and (2) an observable update mechanism, accounts for the dynamics of macroscopic brain representations elicited by visual sequences. Together, these results detail a simple architecture explaining how successive visual events and their respective timings can be simultaneously represented in the brain.SIGNIFICANCE STATEMENT Our retinas are continuously bombarded with a rich flux of visual input. Yet, how our brain continuously processes such visual streams is a major challenge to neuroscience. Here, we developed techniques to decode and track, from human brain activity, multiple images flashed in rapid succession. Our results show that the brain simultaneously represents multiple successive images at each time instant by multiplexing them along a neural cascade. Dynamical modeling shows that these results can be explained by a hierarchy of neural assemblies that continuously propagate multiple visual contents. Overall, this study sheds new light on the biological basis of our visual experience.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/fisiologia , Imaginação/fisiologia , Modelos Neurológicos , Tempo , Percepção Visual/fisiologia , Adolescente , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Rede Nervosa/fisiologia , Estimulação Luminosa , Adulto Jovem
14.
Nat Commun ; 12(1): 1149, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608533

RESUMO

An outstanding challenge for consciousness research is to characterize the neural signature of conscious access independently of any decisional processes. Here we present a model-based approach that uses inter-trial variability to identify the brain dynamics associated with stimulus processing. We demonstrate that, even in the absence of any task or behavior, the electroencephalographic response to auditory stimuli shows bifurcation dynamics around 250-300 milliseconds post-stimulus. Namely, the same stimulus gives rise to late sustained activity on some trials, and not on others. This late neural activity is predictive of task-related reports, and also of reports of conscious contents that are randomly sampled during task-free listening. Source localization further suggests that task-free conscious access recruits the same neural networks as those associated with explicit report, except for frontal executive components. Studying brain dynamics through variability could thus play a key role for identifying the core signatures of conscious access, independent of report.


Assuntos
Encéfalo/fisiologia , Estado de Consciência/fisiologia , Estimulação Acústica , Adolescente , Adulto , Percepção Auditiva/fisiologia , Comportamento , Neurociência Cognitiva , Eletroencefalografia , Feminino , Humanos , Masculino , Percepção Visual/fisiologia , Adulto Jovem
15.
Entropy (Basel) ; 22(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33286220

RESUMO

Sentence comprehension requires inferring, from a sequence of words, the structure of syntactic relationships that bind these words into a semantic representation. Our limited ability to build some specific syntactic structures, such as nested center-embedded clauses (e.g., "The dog that the cat that the mouse bit chased ran away"), suggests a striking capacity limitation of sentence processing, and thus offers a window to understand how the human brain processes sentences. Here, we review the main hypotheses proposed in psycholinguistics to explain such capacity limitation. We then introduce an alternative approach, derived from our recent work on artificial neural networks optimized for language modeling, and predict that capacity limitation derives from the emergence of sparse and feature-specific syntactic units. Unlike psycholinguistic theories, our neural network-based framework provides precise capacity-limit predictions without making any a priori assumptions about the form of the grammar or parser. Finally, we discuss how our framework may clarify the mechanistic underpinning of language processing and its limitations in the human brain.

16.
Elife ; 92020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32869746

RESUMO

Perception depends on a complex interplay between feedforward and recurrent processing. Yet, while the former has been extensively characterized, the computational organization of the latter remains largely unknown. Here, we use magneto-encephalography to localize, track and decode the feedforward and recurrent processes of reading, as elicited by letters and digits whose level of ambiguity was parametrically manipulated. We first confirm that a feedforward response propagates through the ventral and dorsal pathways within the first 200 ms. The subsequent activity is distributed across temporal, parietal and prefrontal cortices, which sequentially generate five levels of representations culminating in action-specific motor signals. Our decoding analyses reveal that both the content and the timing of these brain responses are best explained by a hierarchy of recurrent neural assemblies, which both maintain and broadcast increasingly rich representations. Together, these results show how recurrent processes generate, over extended time periods, a cascade of decisions that ultimately accounts for subjects' perceptual reports and reaction times.


Assuntos
Córtex Cerebral/fisiologia , Retroalimentação Fisiológica/fisiologia , Tempo de Reação/fisiologia , Leitura , Córtex Cerebral/diagnóstico por imagem , Tomada de Decisões , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Atividade Motora/fisiologia , Estimulação Luminosa , Análise e Desempenho de Tarefas
17.
Sci Rep ; 10(1): 14037, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820188

RESUMO

Long-range cortico-cortical functional connectivity has long been theorized to be necessary for conscious states. In the present work, we estimate long-range cortical connectivity in a series of intracranial and scalp EEG recordings experiments. In the two first experiments intracranial-EEG (iEEG) was recorded during four distinct states within the same individuals: conscious wakefulness (CW), rapid-eye-movement sleep (REM), stable periods of slow-wave sleep (SWS) and deep propofol anaesthesia (PA). We estimated functional connectivity using the following two methods: weighted Symbolic-Mutual-Information (wSMI) and phase-locked value (PLV). Our results showed that long-range functional connectivity in the delta-theta frequency band specifically discriminated CW and REM from SWS and PA. In the third experiment, we generalized this original finding on a large cohort of brain-injured patients. FC in the delta-theta band was significantly higher in patients being in a minimally conscious state (MCS) than in those being in a vegetative state (or unresponsive wakefulness syndrome). Taken together the present results suggest that FC of cortical activity in this slow frequency band is a new and robust signature of conscious states.


Assuntos
Encéfalo/fisiologia , Estado de Consciência , Eletroencefalografia/métodos , Couro Cabeludo/fisiologia , Adulto , Epilepsia/fisiopatologia , Feminino , Humanos , Hipnóticos e Sedativos/administração & dosagem , Masculino , Propofol/administração & dosagem , Sono REM , Vigília
18.
Neuroimage ; 220: 117028, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32603859

RESUMO

Identifying causes solely from observations can be particularly challenging when i) the factors under investigation are difficult to manipulate independently from one-another and ii) observations are high-dimensional. To address this issue, we introduce ''Back-to-Back'' regression (B2B), a linear method designed to efficiently estimate, from a set of correlated factors, those that most plausibly account for multidimensional observations. First, we prove the consistency of B2B, its links to other linear approaches, and show how it can provide a robust, unbiased and interpretable scalar estimate for each factor. Second, we use a variety of simulated data to show that B2B can outperform forward modeling ("encoding"), backward modeling ("decoding") as well as cross-decomposition modeling (i.e. canonical correlation analysis and partial least squares) on causal identification when the factors and the observations are not orthogonal. Finally, we apply B2B to a hundred magneto-encephalography recordings and to a hundred functional Magnetic Resonance Imaging recordings acquired while subjects performed a 1 â€‹h reading task. B2B successfully disentangles the respective contribution of collinear factors such as word length, word frequency in the early visual and late associative cortical responses respectively. B2B compared favorably to other standard techniques on this disentanglement. We discuss how the speed and the generality of B2B sets promising foundations to help identify the causal contributions of covarying factors from high-dimensional observations.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Humanos , Análise Multivariada , Leitura , Análise de Regressão
19.
N Engl J Med ; 380(26): 2497-2505, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31242361

RESUMO

BACKGROUND: Brain activation in response to spoken motor commands can be detected by electroencephalography (EEG) in clinically unresponsive patients. The prevalence and prognostic importance of a dissociation between commanded motor behavior and brain activation in the first few days after brain injury are not well understood. METHODS: We studied a prospective, consecutive series of patients in a single intensive care unit who had acute brain injury from a variety of causes and who were unresponsive to spoken commands, including some patients with the ability to localize painful stimuli or to fixate on or track visual stimuli. Machine learning was applied to EEG recordings to detect brain activation in response to commands that patients move their hands. The functional outcome at 12 months was determined with the Glasgow Outcome Scale-Extended (GOS-E; levels range from 1 to 8, with higher levels indicating better outcomes). RESULTS: A total of 16 of 104 unresponsive patients (15%) had brain activation detected by EEG at a median of 4 days after injury. The condition in 8 of these 16 patients (50%) and in 23 of 88 patients (26%) without brain activation improved such that they were able to follow commands before discharge. At 12 months, 7 of 16 patients (44%) with brain activation and 12 of 84 patients (14%) without brain activation had a GOS-E level of 4 or higher, denoting the ability to function independently for 8 hours (odds ratio, 4.6; 95% confidence interval, 1.2 to 17.1). CONCLUSIONS: A dissociation between the absence of behavioral responses to motor commands and the evidence of brain activation in response to these commands in EEG recordings was found in 15% of patients in a consecutive series of patients with acute brain injury. (Supported by the Dana Foundation and the James S. McDonnell Foundation.).


Assuntos
Lesões Encefálicas/fisiopatologia , Encéfalo/fisiopatologia , Cognição/fisiologia , Eletroencefalografia , Atividade Motora/fisiologia , Máquina de Vetores de Suporte , Adulto , Idoso , Área Sob a Curva , Lesões Encefálicas/psicologia , Feminino , Escala de Coma de Glasgow , Escala de Resultado de Glasgow , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Exame Neurológico , Prognóstico , Estudos Prospectivos , Valores de Referência , Inconsciência/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA