Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1197768, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260594
2.
Front Psychiatry ; 12: 781668, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34916977

RESUMO

Alcohol use disorder (AUD) is a chronic, relapsing brain disorder, characterized by compulsive alcohol seeking and disrupted brain function. In individuals with AUD, abstinence from alcohol often precipitates withdrawal symptoms than can be life threatening. Here, we review evidence for nutritional ketosis as a potential means to reduce withdrawal and alcohol craving. We also review the underlying mechanisms of action of ketosis. Several findings suggest that during alcohol intoxication there is a shift from glucose to acetate metabolism that is enhanced in individuals with AUD. During withdrawal, there is a decline in acetate levels that can result in an energy deficit and could contribute to neurotoxicity. A ketogenic diet or ingestion of a ketone ester elevates ketone bodies (acetoacetate, ß-hydroxybutyrate and acetone) in plasma and brain, resulting in nutritional ketosis. These effects have been shown to reduce alcohol withdrawal symptoms, alcohol craving, and alcohol consumption in both preclinical and clinical studies. Thus, nutritional ketosis may represent a unique treatment option for AUD: namely, a nutritional intervention that could be used alone or to augment the effects of medications.

3.
J Am Heart Assoc ; 10(19): e020729, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34583524

RESUMO

Background Heart failure is responsible for approximately 65% of deaths in patients with type 2 diabetes mellitus. However, existing therapeutics for type 2 diabetes mellitus have limited success on the prevention of diabetic cardiomyopathy. The aim of this study was to determine whether moderate elevation in D-ß-hydroxybutyrate improves cardiac function in animals with type 2 diabetes mellitus. Methods and Results Type 2 diabetic (db/db) and their corresponding wild-type mice were fed a control diet or a diet where carbohydrates were equicalorically replaced by D-ß-hydroxybutyrate-(R)-1,3 butanediol monoester (ketone ester [KE]). After 4 weeks, echocardiography demonstrated that a KE diet improved systolic and diastolic function in db/db mice. A KE diet increased expression of mitochondrial succinyl-CoA:3-oxoacid-CoA transferase and restored decreased expression of mitochondrial ß-hydroxybutyrate dehydrogenase, key enzymes in cardiac ketone metabolism. A KE diet significantly enhanced both basal and ADP-mediated oxygen consumption in cardiac mitochondria from both wild-type and db/db animals; however, it did not result in the increased mitochondrial respiratory control ratio. Additionally, db/db mice on a KE diet had increased resistance to oxidative and redox stress, with evidence of restoration of decreased expression of thioredoxin and glutathione peroxidase 4 and less permeability transition pore activity in mitochondria. Mitochondrial biogenesis, quality control, and elimination of dysfunctional mitochondria via mitophagy were significantly increased in cardiomyocytes from db/db mice on a KE diet. The increase in mitophagy was correlated with restoration of mitofusin 2 expression, which contributed to improved coupling between cytosolic E3 ubiquitin ligase translocation into mitochondria and microtubule-associated protein 1 light chain 3-mediated autophagosome formation. Conclusions Moderate elevation in circulating D-ß-hydroxybutyrate levels via KE supplementation enhances mitochondrial biogenesis, quality control, and oxygen consumption and increases resistance to oxidative/redox stress and mPTP opening, thus resulting in improvement of cardiac function in animals with type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ácido 3-Hidroxibutírico , Animais , Butileno Glicóis , Ésteres , Humanos , Cetonas , Camundongos , Camundongos Endogâmicos , Mitocôndrias Cardíacas
4.
Nat Metab ; 2(11): 1232-1247, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33106690

RESUMO

The myocardium is metabolically flexible; however, impaired flexibility is associated with cardiac dysfunction in conditions including diabetes and heart failure. The mitochondrial pyruvate carrier (MPC) complex, composed of MPC1 and MPC2, is required for pyruvate import into the mitochondria. Here we show that MPC1 and MPC2 expression is downregulated in failing human and mouse hearts. Mice with cardiac-specific deletion of Mpc2 (CS-MPC2-/-) exhibited normal cardiac size and function at 6 weeks old, but progressively developed cardiac dilation and contractile dysfunction, which was completely reversed by a high-fat, low-carbohydrate ketogenic diet. Diets with higher fat content, but enough carbohydrate to limit ketosis, also improved heart failure, while direct ketone body provisioning provided only minor improvements in cardiac remodelling in CS-MPC2-/- mice. An acute fast also improved cardiac remodelling. Together, our results reveal a critical role for mitochondrial pyruvate use in cardiac function, and highlight the potential of dietary interventions to enhance cardiac fat metabolism to prevent or reverse cardiac dysfunction and remodelling in the setting of MPC deficiency.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Ciclo do Ácido Cítrico/genética , Dieta Cetogênica , Regulação para Baixo , Jejum , Insuficiência Cardíaca/diagnóstico por imagem , Humanos , Corpos Cetônicos/metabolismo , Metabolismo dos Lipídeos/genética , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Contração Miocárdica , Miocárdio/metabolismo , Ácido Pirúvico/metabolismo
5.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033248

RESUMO

Because of a decreased sensitivity toward insulin, a key regulator of pyruvate dehydrogenase (PDH), Alzheimer's patients have lower brain glucose utilization with reductions in Tricarboxylic Acid (TCA) cycle metabolites such as citrate, a precursor to n-acetyl-aspartate. In the 3xTgAd mouse model of Alzheimer's disease (AD), aging mice also demonstrate low brain glucose metabolism. Ketone metabolism can overcome PDH inhibition and restore TCA cycle metabolites, thereby enhancing amino acid biosynthesis. A ketone ester of d-ß-hydroxybutyrate was incorporated into a diet (Ket) and fed to 3xTgAd mice. A control group was fed a calorically matched diet (Cho). At 15 months of age, the exploratory and avoidance-related behavior patterns of the mice were evaluated. At 16.5 months of age, the animals were euthanized, and their hippocampi were analyzed for citrate, α-ketoglutarate, and amino acids. In the hippocampi of the Ket-fed mice, there were higher concentrations of citrate and α-ketoglutarate as well as higher concentrations of glutamate, aspartate and n-acetyl-aspartate compared with controls. There were positive associations between (1) concentrations of aspartate and n-acetyl-aspartate (n = 14, R = 0.9327), and (2) α-ketoglutarate and glutamate (n = 14, R = 0.8521) in animals maintained on either diet. Hippocampal n-acetyl-aspartate predicted the outcome of several exploratory and avoidance-related behaviors. Ketosis restored citrate and α-ketoglutarate in the hippocampi of aging mice. Higher concentrations of n-acetyl-aspartate corresponded with greater exploratory activity and reduced avoidance-related behavior.


Assuntos
Doença de Alzheimer/metabolismo , Ésteres/metabolismo , Cetonas/metabolismo , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Dieta , Modelos Animais de Doenças , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Corpos Cetônicos/metabolismo , Cetose/metabolismo , Masculino , Camundongos
6.
FASEB J ; 33(12): 13126-13130, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31690124

RESUMO

Cell membrane potential and inorganic ion distributions are currently viewed from a kinetic electric paradigm, which ignores thermodynamics. The resting membrane potential is viewed as a diffusion potential. The 9 major inorganic ions found in blood plasma (Ca2+, Na+, Mg2+, K+, H+, Cl-, HCO3-, H2PO4-, and HPO42-) are distributed unequally across the plasma membrane. This unequal distribution requires the energy of ATP hydrolysis through the action of the Na+-K+ ATPase. The cell resting membrane potential in each of 3 different tissues with widely different resting membrane potentials has been shown to be equal to the Nernst equilibrium potential of the most permeant inorganic ion. The energy of the measured distribution of the 9 major inorganic ions between extra- and intracellular phases was essentially equal to the independently measured energy of ATP hydrolysis, showing that the distribution of these 9 major ions was in near-equilibrium with the ΔG' of ATP. Therefore, thermodynamics does appear to play an essential role in the determination of the cell resting membrane potential and the inorganic ion distribution across the plasma membrane.-Veech, R. L., King, M. T., Pawlosky, R., Bradshaw, P. C., Curtis, W. Relationship between inorganic ion distribution, resting membrane potential, and the ΔG' of ATP hydrolysis: a new paradigm.


Assuntos
Íons/sangue , Potenciais da Membrana/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Hidrólise , ATPase Trocadora de Sódio-Potássio/metabolismo , Termodinâmica
7.
Cell Metab ; 30(1): 174-189.e5, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31155495

RESUMO

The precursor cells for metabolically beneficial beige adipocytes can alternatively become fibrogenic and contribute to adipose fibrosis. We found that cold exposure or ß3-adrenergic agonist treatment of mice decreased the fibrogenic profile of precursor cells and stimulated beige adipocyte differentiation. This fibrogenic-to-adipogenic transition was impaired in aged animals, correlating with reduced adipocyte expression of the transcription factor PRDM16. Genetic loss of Prdm16 mimicked the effect of aging in promoting fibrosis, whereas increasing PRDM16 in aged mice decreased fibrosis and restored beige adipose development. PRDM16-expressing adipose cells secreted the metabolite ß-hydroxybutyrate (BHB), which blocked precursor fibrogenesis and facilitated beige adipogenesis. BHB catabolism in precursor cells, mediated by BDH1, was required for beige fat differentiation in vivo. Finally, dietary BHB supplementation in aged animals reduced adipose fibrosis and promoted beige fat formation. Together, our results demonstrate that adipocytes secrete a metabolite signal that controls beige fat remodeling.


Assuntos
Adipócitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Tecido Adiposo Bege/efeitos dos fármacos , Tecido Adiposo Bege/metabolismo , Animais , Western Blotting , Proteínas de Ligação a DNA/genética , Citometria de Fluxo , Humanos , Técnicas In Vitro , Masculino , Espectrometria de Massas , Camundongos , Fatores de Transcrição/genética
8.
IUBMB Life ; 69(5): 305-314, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28371201

RESUMO

The extension of life span by caloric restriction has been studied across species from yeast and Caenorhabditis elegans to primates. No generally accepted theory has been proposed to explain these observations. Here, we propose that the life span extension produced by caloric restriction can be duplicated by the metabolic changes induced by ketosis. From nematodes to mice, extension of life span results from decreased signaling through the insulin/insulin-like growth factor receptor signaling (IIS) pathway. Decreased IIS diminishes phosphatidylinositol (3,4,5) triphosphate (PIP3 ) production, leading to reduced PI3K and AKT kinase activity and decreased forkhead box O transcription factor (FOXO) phosphorylation, allowing FOXO proteins to remain in the nucleus. In the nucleus, FOXO proteins increase the transcription of genes encoding antioxidant enzymes, including superoxide dismutase 2, catalase, glutathione peroxidase, and hundreds of other genes. An effective method for combating free radical damage occurs through the metabolism of ketone bodies, ketosis being the characteristic physiological change brought about by caloric restriction from fruit flies to primates. A dietary ketone ester also decreases circulating glucose and insulin leading to decreased IIS. The ketone body, d-ß-hydroxybutyrate (d-ßHB), is a natural inhibitor of class I and IIa histone deacetylases that repress transcription of the FOXO3a gene. Therefore, ketosis results in transcription of the enzymes of the antioxidant pathways. In addition, the metabolism of ketone bodies results in a more negative redox potential of the NADP antioxidant system, which is a terminal destructor of oxygen free radicals. Addition of d-ßHB to cultures of C. elegans extends life span. We hypothesize that increasing the levels of ketone bodies will also extend the life span of humans and that calorie restriction extends life span at least in part through increasing the levels of ketone bodies. An exogenous ketone ester provides a new tool for mimicking the effects of caloric restriction that can be used in future research. The ability to power mitochondria in aged individuals that have limited ability to oxidize glucose metabolites due to pyruvate dehydrogenase inhibition suggests new lines of research for preventative measures and treatments for aging and aging-related disorders. © 2017 The Authors IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 69(5):305-314, 2017.


Assuntos
Envelhecimento/fisiologia , Restrição Calórica , Corpos Cetônicos/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Humanos , Corpos Cetônicos/metabolismo , Longevidade/genética , Estresse Oxidativo/fisiologia , Complexo Piruvato Desidrogenase/metabolismo , Encurtamento do Telômero
9.
Cell Metab ; 24(2): 256-68, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27475046

RESUMO

Ketosis, the metabolic response to energy crisis, is a mechanism to sustain life by altering oxidative fuel selection. Often overlooked for its metabolic potential, ketosis is poorly understood outside of starvation or diabetic crisis. Thus, we studied the biochemical advantages of ketosis in humans using a ketone ester-based form of nutrition without the unwanted milieu of endogenous ketone body production by caloric or carbohydrate restriction. In five separate studies of 39 high-performance athletes, we show how this unique metabolic state improves physical endurance by altering fuel competition for oxidative respiration. Ketosis decreased muscle glycolysis and plasma lactate concentrations, while providing an alternative substrate for oxidative phosphorylation. Ketosis increased intramuscular triacylglycerol oxidation during exercise, even in the presence of normal muscle glycogen, co-ingested carbohydrate and elevated insulin. These findings may hold clues to greater human potential and a better understanding of fuel metabolism in health and disease.


Assuntos
Atletas , Metabolismo Energético , Cetose/metabolismo , Resistência Física , Adiposidade , Carboidratos , Carnitina/metabolismo , Dieta , Exercício Físico , Feminino , Glicogênio/metabolismo , Humanos , Corpos Cetônicos/metabolismo , Masculino , Músculo Esquelético/metabolismo , Descanso
10.
FASEB J ; 30(12): 4021-4032, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27528626

RESUMO

Ketone bodies are the most energy-efficient fuel and yield more ATP per mole of substrate than pyruvate and increase the free energy released from ATP hydrolysis. Elevation of circulating ketones via high-fat, low-carbohydrate diets has been used for the treatment of drug-refractory epilepsy and for neurodegenerative diseases, such as Parkinson's disease. Ketones may also be beneficial for muscle and brain in times of stress, such as endurance exercise. The challenge has been to raise circulating ketone levels by using a palatable diet without altering lipid levels. We found that blood ketone levels can be increased and cholesterol and triglycerides decreased by feeding rats a novel ketone ester diet: chow that is supplemented with (R)-3-hydroxybutyl (R)-3-hydroxybutyrate as 30% of calories. For 5 d, rats on the ketone diet ran 32% further on a treadmill than did control rats that ate an isocaloric diet that was supplemented with either corn starch or palm oil (P < 0.05). Ketone-fed rats completed an 8-arm radial maze test 38% faster than did those on the other diets, making more correct decisions before making a mistake (P < 0.05). Isolated, perfused hearts from rats that were fed the ketone diet had greater free energy available from ATP hydrolysis during increased work than did hearts from rats on the other diets as shown by using [31P]-NMR spectroscopy. The novel ketone diet, therefore, improved physical performance and cognitive function in rats, and its energy-sparing properties suggest that it may help to treat a range of human conditions with metabolic abnormalities.-Murray, A. J., Knight, N. S., Cole, M. A., Cochlin, L. E., Carter, E., Tchabanenko, K., Pichulik, T., Gulston, M. K., Atherton, H. J., Schroeder, M. A., Deacon, R. M. J., Kashiwaya, Y., King, M. T., Pawlosky, R., Rawlins, J. N. P., Tyler, D. J., Griffin, J. L., Robertson, J., Veech, R. L., Clarke, K. Novel ketone diet enhances physical and cognitive performance.


Assuntos
Cognição/fisiologia , Dieta , Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Cetonas/administração & dosagem , Animais , Colesterol/sangue , Carboidratos da Dieta/metabolismo , Gorduras na Dieta/metabolismo , Insulina/metabolismo , Masculino , Ratos Wistar , Triglicerídeos/sangue
11.
Neurobiol Aging ; 34(6): 1530-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23276384

RESUMO

Alzheimer's disease (AD) involves progressive accumulation of amyloid ß-peptide (Aß) and neurofibrillary pathologies, and glucose hypometabolism in brain regions critical for memory. The 3xTgAD mouse model was used to test the hypothesis that a ketone ester-based diet can ameliorate AD pathogenesis. Beginning at a presymptomatic age, 2 groups of male 3xTgAD mice were fed a diet containing a physiological enantiomeric precursor of ketone bodies (KET) or an isocaloric carbohydrate diet. The results of behavioral tests performed at 4 and 7 months after diet initiation revealed that KET-fed mice exhibited significantly less anxiety in 2 different tests. 3xTgAD mice on the KET diet also exhibited significant, albeit relatively subtle, improvements in performance on learning and memory tests. Immunohistochemical analyses revealed that KET-fed mice exhibited decreased Aß deposition in the subiculum, CA1 and CA3 regions of the hippocampus, and the amygdala. KET-fed mice exhibited reduced levels of hyperphosphorylated tau deposition in the same regions of the hippocampus, amygdala, and cortex. Thus, a novel ketone ester can ameliorate proteopathic and behavioral deficits in a mouse AD model.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ansiedade/metabolismo , Transtornos Cognitivos/metabolismo , Dieta Cetogênica/métodos , Proteínas tau/metabolismo , Doença de Alzheimer/dietoterapia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/efeitos adversos , Animais , Ansiedade/dietoterapia , Ansiedade/patologia , Transtornos Cognitivos/dietoterapia , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Distribuição Aleatória , Proteínas tau/efeitos adversos
12.
Regul Toxicol Pharmacol ; 63(2): 196-208, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22504461

RESUMO

(R)-3-Hydroxybutyl (R)-3-hydroxybutyrate (ketone monoester) has been developed as an oral source of ketones, which may be utilized for energy. In a 28-day toxicity study, Crl:WI (Wistar) rats received diets containing, as 30% of the calories, ketone monoester (12 and 15 g/kg body weight/day for male and female rats, respectively). Control groups received either carbohydrate- or fat-based diets. Rats in the test group consumed less feed and gained less weight than control animals; similar findings have been documented in studies of ketogenic diets. Between-group differences were noted in selected hematology, coagulation, and serum chemistry parameters; however, values were within normal physiological ranges and/or were not accompanied by other changes indicative of toxicity. Upon gross and microscopic evaluation, there were no findings associated with the ketone monoester. In a developmental toxicity study, pregnant Crl:WI (Han) rats were administered 2g/kg body weight/day ketone monoester or water (control) via gavage on days 6 through 20 of gestation. No Caesarean-sectioning or litter parameters were affected by the test article. The overall incidence of fetal alterations was higher in the test group; however, there were no specific alterations attributable to the test substance. The results of these studies support the safety of ketone monoester.


Assuntos
Dieta , Hidroxibutiratos/toxicidade , Cetonas/toxicidade , Reprodução/efeitos dos fármacos , Testes de Toxicidade Subaguda , Animais , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Ingestão de Energia , Metabolismo Energético/efeitos dos fármacos , Ésteres , Feminino , Hidroxibutiratos/metabolismo , Cetonas/metabolismo , Masculino , Exposição Materna/efeitos adversos , Ratos , Ratos Wistar
13.
FASEB J ; 26(6): 2351-62, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22362892

RESUMO

We measured the effects of a diet in which D-ß-hydroxybutyrate-(R)-1,3 butanediol monoester [ketone ester (KE)] replaced equicaloric amounts of carbohydrate on 8-wk-old male C57BL/6J mice. Diets contained equal amounts of fat, protein, and micronutrients. The KE group was fed ad libitum, whereas the control (Ctrl) mice were pair-fed to the KE group. Blood d-ß-hydroxybutyrate levels in the KE group were 3-5 times those reported with high-fat ketogenic diets. Voluntary food intake was reduced dose dependently with the KE diet. Feeding the KE diet for up to 1 mo increased the number of mitochondria and doubled the electron transport chain proteins, uncoupling protein 1, and mitochondrial biogenesis-regulating proteins in the interscapular brown adipose tissue (IBAT). [(18)F]-Fluorodeoxyglucose uptake in IBAT of the KE group was twice that in IBAT of the Ctrl group. Plasma leptin levels of the KE group were more than 2-fold those of the Ctrl group and were associated with increased sympathetic nervous system activity to IBAT. The KE group exhibited 14% greater resting energy expenditure, but the total energy expenditure measured over a 24-h period or body weights was not different. The quantitative insulin-sensitivity check index was 73% higher in the KE group. These results identify KE as a potential antiobesity supplement.


Assuntos
Tecido Adiposo Marrom/metabolismo , Hidroxibutiratos/farmacologia , Canais Iônicos/biossíntese , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Ácido 3-Hidroxibutírico/farmacologia , Animais , Dieta , Ingestão de Alimentos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Fluordesoxiglucose F18/metabolismo , Resistência à Insulina , Corpos Cetônicos/sangue , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Proteína Desacopladora 1
14.
J Biol Chem ; 285(34): 25950-6, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20529850

RESUMO

Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD(+)]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain L-glutamate by 15-20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain.


Assuntos
Ésteres/farmacologia , Canais Iônicos/efeitos dos fármacos , Malonil Coenzima A/efeitos dos fármacos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas Mitocondriais/efeitos dos fármacos , Proteínas do Tecido Nervoso/efeitos dos fármacos , Ácido 3-Hidroxibutírico , Animais , Química Encefálica , Butileno Glicóis , Dieta , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético , Ésteres/administração & dosagem , Ácidos Graxos/metabolismo , Ácido Glutâmico/efeitos dos fármacos , Canais Iônicos/biossíntese , Corpos Cetônicos/metabolismo , Masculino , Malonil Coenzima A/sangue , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Transporte da Membrana Mitocondrial , Proteínas Mitocondriais/biossíntese , Proteínas de Desacoplamento Mitocondrial , Proteínas do Tecido Nervoso/biossíntese , Óleo de Palmeira , Óleos de Plantas/administração & dosagem , Óleos de Plantas/farmacologia , Ratos , Ratos Wistar , Ácido gama-Aminobutírico/efeitos dos fármacos
15.
Cell Metab ; 4(2): 133-42, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16890541

RESUMO

Reducing insulin/IGF signaling allows for organismal survival during periods of inhospitable conditions by regulating the diapause state, whereby the organism stockpiles lipids, reduces fertility, increases stress resistance, and has an increased lifespan. The Target of Rapamycin (TOR) responds to changes in growth factors, amino acids, oxygen tension, and energy status; however, it is unclear how TOR contributes to physiological homeostasis and disease conditions. Here, we show that reducing the function of Drosophila TOR results in decreased lipid stores and glucose levels. Importantly, this reduction of dTOR activity blocks the insulin resistance and metabolic syndrome phenotypes associated with increased activity of the insulin responsive transcription factor, dFOXO. Reduction in dTOR function also protects against age-dependent decline in heart function and increases longevity. Thus, the regulation of dTOR activity may be an ancient "systems biological" means of regulating metabolism and senescence, that has important evolutionary, physiological, and clinical implications.


Assuntos
Proteínas de Drosophila/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Resistência à Insulina/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Regulação para Baixo , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/farmacologia , Fatores de Transcrição Forkhead/antagonistas & inibidores , Glucose/análise , Lipídeos/análise , Modelos Biológicos , Dados de Sequência Molecular , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Quinases , Alinhamento de Sequência , Transdução de Sinais , Serina-Treonina Quinases TOR , Regulação para Cima
16.
Am J Physiol Endocrinol Metab ; 290(6): E1057-67, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16380392

RESUMO

This study was conceived in an effort to understand cause and effect relationships between hyperglycemia and diabetic retinopathy. Numerous studies show that hyperglycemia leads to oxidative stress in the diabetic retinas, but the mechanisms that generate oxidative stress have not been resolved. Increased electron pressure on the mitochondrial electron transfer chain, increased generation of cytosolic NADH, and decreases in cellular NADPH have all been cited as possible sources of reactive oxygen species and nitrous oxide. In the present study, excised retinas from control and diabetic rats were exposed to euglycemic and hyperglycemic conditions. Using a microwave irradiation quenching technique to study retinas of diabetic rats in vivo, glucose, glucose-derived metabolites, and NADH oxidation/reduction status were measured. Studying excised retinas in vitro, glycolytic flux, lactate production, and tricarboxylic acid cycle flux were evaluated. Enzymatically assayed glucose 6-phosphate and fructose 6-phosphate were only slightly elevated by hyperglycemia and/or diabetes, but polyols were increased dramatically. Cytosolic NADH-to-NAD ratios were not elevated by hyperglycemia nor by diabetes in vivo or in vitro. Tricarboxylic acid cycle flux was not increased by the diabetic state nor by hyperglycemia. On the other hand, small increases in glycolytic flux were observed with hyperglycemia, but glycolytic flux was always lower in diabetic compared with control animals. An observed decrease in activity of glyceraldehyde-3-phosphate dehydrogenase may be partially responsible for slow glycolytic flux for retinas of diabetic rats. Therefore, it is concluded that glucose metabolism, downstream of hexokinase, is not elevated by hyperglycemia or diabetes. Metabolites upstream of glucose such as the sorbitol pathway (which decreases NADPH) and polyol synthesis are increased.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Glucose/metabolismo , Glicólise , Retina/metabolismo , Animais , Diabetes Mellitus Experimental/enzimologia , Retinopatia Diabética/enzimologia , Glucose-6-Fosfato/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/química , Técnicas In Vitro , Oxirredução , Monoéster Fosfórico Hidrolases/metabolismo , Polímeros/metabolismo , Ratos , Ratos Sprague-Dawley , Retina/patologia , Fatores de Tempo
17.
Mol Cell ; 12(1): 51-62, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12887892

RESUMO

Sir2 is a NAD(+)-dependent histone deacetylase that controls gene silencing, cell cycle, DNA damage repair, and life span. Prompted by the observation that the [NAD(+)]/[NADH] ratio is subjected to dynamic fluctuations in skeletal muscle, we have tested whether Sir2 regulates muscle gene expression and differentiation. Sir2 forms a complex with the acetyltransferase PCAF and MyoD and, when overexpressed, retards muscle differentiation. Conversely, cells with decreased Sir2 differentiate prematurely. To inhibit myogenesis, Sir2 requires its NAD(+)-dependent deacetylase activity. The [NAD(+)]/[NADH] ratio decreases as muscle cells differentiate, while an increased [NAD(+)]/[NADH] ratio inhibits muscle gene expression. Cells with reduced Sir2 levels are less sensitive to the inhibition imposed by an elevated [NAD(+)]/[NADH] ratio. These results indicate that Sir2 regulates muscle gene expression and differentiation by possibly functioning as a redox sensor. In response to exercise, food intake, and starvation, Sir2 may sense modifications of the redox state and promptly modulate gene expression.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Fibras Musculares Esqueléticas/enzimologia , Músculo Esquelético/embriologia , Músculo Esquelético/enzimologia , Sirtuínas/metabolismo , Acetiltransferases/metabolismo , Animais , Linhagem Celular , Histona Acetiltransferases , Humanos , Camundongos , Proteína MyoD/metabolismo , NAD/metabolismo , Oxirredução , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirtuína 2 , Sirtuínas/genética
18.
Arch Biochem Biophys ; 410(2): 280-6, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12573288

RESUMO

The apparent equilibrium constant of the biochemical reaction, 2-propanol+NADP(ox) = acetone+NADP(red), was determined at I = 0.25 M over a wide range of pH (5.63 to 8.02) and temperature (5 to 40 degrees C). The reaction was catalyzed by an NADP-dependent alcohol dehydrogenase. The results were used to calculate thermodynamic quantities for the chemical (ionic) reference reaction: 2-propanol+NADP(ox)(3-) = acetone+NADP(red)(4-)+H(+). The thermodynamic quantities for this reference reaction are as follows: equilibrium constant K = (5.98+/-0.46) x 10(-10); standard molar Gibbs energy change Delta(r)G(0) = (52.65+/-0.19) kJmol(-1); standard molar enthalpy change Delta(r)H(0) = (38.9+/-0.6) kJmol(-1); and standard molar entropy change Delta(r)S(0) = -(46.1+/-2.2)J K(-1)mol(-1). All of these results pertain to 25 degrees C (298.15 K) and I = 0. The results also lead, in conjunction with tabulated thermodynamic quantities, to the standard electromotive force E(0) = -0.140 V for the reduction of NADP(ox)(3-) to NADP(red)(4-).


Assuntos
2-Propanol/farmacologia , Álcool Desidrogenase/química , Álcool Desidrogenase/metabolismo , NADP/metabolismo , Relação Dose-Resposta a Droga , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Temperatura , Termodinâmica
19.
IUBMB Life ; 54(5): 241-52, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12587974

RESUMO

The relation between the energies of ion movement and ATP hydrolysis is unknown in tissues with widely varying electric potentials. Consequently, we measured the concentration of the nine major inorganic ions in the extra- and intracellular phases in heart, liver, and red cells with resting electrical potentials, E(N), of -86, -28, and -6 mV, respectively, under six different physiological conditions. We calculated the Nernst electric potential and the energy of ion movement between the phases. We found that the energy of ATP hydrolysis was essentially constant, between -54 and -58 kJ/mol, in all tissues and conditions. In contrast, as E(N) decreased, the energies of the Na+ and K+ gradients decreased, with slopes approximating their valence. The difference between the energies of Na+ and K+ gradients remained constant at 17 kJ/mol, which is approximately one third of the energy of ATP hydrolysis, demonstrating near-equilibrium of the Na+/K+ ATPase in all tissues under all conditions. All cations, except K+, were pumped out of cells and all anions, except Cl- in liver and red cell, were pumped into cells. We conclude that the energy of ATP was expressed in Na+/K+ ATPase and its linked inorganic ion transporters to create a Gibbs-Donnan near-equilibrium system, an inherent part of which was the electric potential.


Assuntos
Eletrofisiologia , Íons , Trifosfato de Adenosina/metabolismo , Animais , Cátions , Concentração de Íons de Hidrogênio , Hidrólise , Fígado/metabolismo , Masculino , Potenciais da Membrana , Miocárdio/metabolismo , Potássio/fisiologia , Ratos , Ratos Wistar , Sódio/fisiologia , Termodinâmica , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...