Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7464, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553537

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) remains the most common cause of liver disease in the United States due to the increased incidence of metabolic dysfunction and obesity. Surfactant protein A (SPA) regulates macrophage function, strongly binds to lipids, and is implicated in renal and idiopathic pulmonary fibrosis (IPF). However, the role of SPA in lipid accumulation, inflammation, and hepatic fibrosis that characterize MASLD remains unknown. SPA deficient (SPA-/-) and age-matched wild-type (WT) control mice were fed a Western diet for 8 weeks to induce MASLD. Blood and liver samples were collected and used to analyze pathological features associated with MASLD. SPA expression was significantly upregulated in livers of mice with MASLD. SPA deficiency attenuated lipid accumulation along with downregulation of genes involved in fatty acid uptake and reduction of hepatic inflammation as evidenced by the diminished macrophage activation, decreased monocyte infiltration, and reduced production of inflammatory cytokines. Moreover, SPA-/- inhibited stellate cell activation, collagen deposit, and liver fibrosis. These results highlight the novel role of SPA in promoting fatty acid uptake into hepatocytes, causing excessive lipid accumulation, inflammation, and fibrosis implicated in the pathogenesis of MASLD.


Assuntos
Fígado Gorduroso , Proteína A Associada a Surfactante Pulmonar , Camundongos , Animais , Dieta Ocidental/efeitos adversos , Fígado Gorduroso/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/complicações , Fibrose , Inflamação/complicações , Lipídeos , Ácidos Graxos
2.
Acta Biomater ; 177: 165-177, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354873

RESUMO

Four-dimensional (4D) printing unlocks new potentials for personalized biomedical implantation, but still with hurdles of lacking suitable materials. Herein, we demonstrate a bioresorbable shape memory elastomer (SME) with high elasticity at both below and above its phase transition temperature (Ttrans). This SME can be digital light 3D printed by co-polymerizing glycerol dodecanoate acrylate prepolymer (pre-PGDA) with acrylic acid monomer to form crosslinked Poly(glycerol dodecanoate acrylate) (PGDA)-Polyacrylic acid (PAA), or PGDA-PAA network. The printed complex, free-standing 3D structures with high-resolution features exhibit shape programming properties at a physiological temperature. By tuning the pre-PGDA weight ratios between 55 wt% and 70 wt%, Ttrans varies between 39.2 and 47.2 ℃ while Young's moduli (E) range 40-170 MPa below Ttrans with fractural strain (εf) of 170 %-200 %. Above Ttrans, E drops to 1-1.82 MPa which is close to those of soft tissue. Strikingly, εf of 130-180 % is still maintained. In vitro biocompatibility test on the material shows > 90 % cell proliferation and great cell attachment. In vivo vascular grafting trials underline the geometrical and mechanical adaptability of these 4D printed constructs in regenerating the aorta tissue. Biodegradation of the implants shows the possibility of their full replacement by natural tissue over time. To highlight its potential for personalized medicine, a patient-specific left atrial appendage (LAA) occluder was printed and implanted endovascularly into an in vitro heart model. STATEMENT OF SIGNIFICANCE: 4D printed shape-memory elastomer (SME) implants particularly designed and manufactured for a patient are greatly sought-after in minimally invasive surgery (MIS). Traditional shape-memory polymers used in these implants often suffer from issues like unsuitable transition temperatures, poor biocompatibility, limited 3D design complexity, and low toughness, making them unsuitable for MIS. Our new SME, with an adjustable transition temperature and enhanced toughness, is both biocompatible and naturally degradable, particularly in cardiovascular contexts. This allows implants, like biomedical scaffolds, to be programmed at room temperature and then adapt to the body's physiological conditions post-implantation. Our studies, including in vivo vascular grafts and in vitro device implantation, highlight the SME's effectiveness in aortic tissue regeneration and its promising applications in MIS.


Assuntos
Elastômeros , Alicerces Teciduais , Humanos , Elastômeros/química , Alicerces Teciduais/química , Glicerol , Implantes Absorvíveis , Lauratos , Impressão Tridimensional , Acrilatos
3.
Biomater Adv ; 153: 213575, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37557033

RESUMO

Conventional implants tend to have significant limitations, as they are one-size-fits-all, require monitoring, and have the potential for immune rejection. However, 4D Printing presents a method to manufacture highly personalized, shape-changing, minimally invasive biomedical implants. Shape memory polymers (SMPs) with a glass transition temperature (Tg) between room and body temperature (20-38 °C) are particularly desirable for this purpose, as they can be deformed to a temporary shape before implantation, then undergo a shape change within the body. Commonly used SMPs possess either an undesirable Tg or lack the biocompatibility or mechanical properties necessary to match soft biological tissues. In this work, Poly(glycerol dodecanoate) acrylate (PGDA) with engineered pores is introduced to solve these issues. Pores are induced by porogen leaching, where microparticles are mixed with the printing ink and then are dissolved in water after 3D printing, creating a hierarchically porous texture to improve biological activity. With this method, highly complex shapes were printed, including overhanging structures, tilted structures, and a "3DBenchy". The porous SMP has a Tg of 35.6 °C and a Young's Modulus between 0.31 and 1.22 MPa, comparable to soft tissues. A one-way shape memory effect (SME) with shape fixity and recovery ratios exceeding 98 % was also demonstrated. Cultured cells had a survival rate exceeding 90 %, demonstrating cytocompatibility. This novel method creates hierarchically porous shape memory scaffolds with an optimal Tg for reducing the invasiveness of implantation and allows for precise control over elastic modulus, porosity, structure, and transition temperature.


Assuntos
Polímeros , Engenharia Tecidual , Porosidade , Próteses e Implantes , Impressão Tridimensional
4.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993244

RESUMO

BACKGROUND: Atherosclerosis is a progressive inflammatory disease where macrophage foam cells play a central role in the pathogenesis. Surfactant protein A (SPA) is a lipid-associating protein involved with regulating macrophage function in various inflammatory diseases. However, the role of SPA in atherosclerosis and macrophage foam cell formation has not been investigated. METHODS: Primary resident peritoneal macrophages were extracted from wildtype (WT) and SPA deficient (SPA -/- ) mice to determine the functional effects of SPA in macrophage foam cell formation. SPA expression was assessed in healthy vessels and atherosclerotic aortic tissue from the human coronary artery and WT or apolipoprotein e-deficient (ApoE -/- ) mice brachiocephalic arteries fed high fat diets (HFD) for 4 weeks. Hypercholesteremic WT and SPA -/- mice fed a HFD for 6 weeks were investigated for atherosclerotic lesions in vivo . RESULTS: In vitro experiments revealed that global SPA deficiency reduced intracellular cholesterol accumulation and macrophage foam cell formation. Mechanistically, SPA -/- dramatically decreased CD36 cellular and mRNA expression. SPA expression was increased in atherosclerotic lesions in humans and ApoE -/- mice. In vivo SPA deficiency attenuated atherosclerosis and reduced the number of lesion-associated macrophage foam cells. CONCLUSIONS: Our results elucidate that SPA is a novel factor for atherosclerosis development. SPA enhances macrophage foam cell formation and atherosclerosis through increasing scavenger receptor cluster of differentiation antigen 36 (CD36) expression.

5.
FEBS Lett ; 596(6): 747-761, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34997963

RESUMO

Considered a key aging gene, CISD2, encoding CDGSH iron-sulfur domain-containing protein 2, plays a central role in regulating calcium homeostasis, preventing mitochondrial dysfunction, and the activation of autophagy and apoptosis in different cells. Here, we show that cardiomyocytes from CISD2-null mice accumulate high levels of iron and contain high levels of transferrin receptor and ferritin. Using proteomics and transmission electron microscopy, we further show that the lack of CISD2 induces several features of the aging process in young mice, but other features are not induced. Taken together, our findings suggest that CISD2 protects cardiomyocytes from overaccumulation of iron, which is common in aging hearts and can contribute to the pathogenesis of heart failure.


Assuntos
Ferro , Miócitos Cardíacos , Envelhecimento , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Transporte , Ferro/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso
6.
Free Radic Biol Med ; 176: 92-104, 2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34547371

RESUMO

The CISD2 (NAF-1) protein plays a key role in regulating cellular homeostasis, aging, cancer and neurodegenerative diseases. It was found to control different calcium, reactive oxygen species (ROS), and iron signaling mechanisms. However, since most studies of CISD2 to date were conducted with cells that constitutively lack, overexpress, or contain mutations in CISD2, the relationships between these different signaling processes are unclear. To address the hierarchy of signaling events occurring in cells upon CISD2 disruption, we developed an inducible system to express CISD2, or the dominant-negative H114C inhibitor of CISD2, in human breast cancer cells. Here, we report that inducible disruption of CISD2 function causes an immediate disruption in mitochondrial labile iron (mLI), and that this disruption results in enhanced mitochondrial ROS (mROS) levels. We further show that alterations in cytosolic and ER calcium levels occur only after the changes in mLI and mROS levels happen and are unrelated to them. Interestingly, disrupting CISD2 function resulted in the enhanced expression of the tumor suppressor thioredoxin-interacting protein (TXNIP) that was dependent on the accumulation of mLI and associated with ferroptosis activation. CISD2 could therefore regulate the expression of TXNIP in cancer cells, and this regulation is dependent on alterations in mLI levels.


Assuntos
Proteínas de Membrana , Neoplasias , Proteínas de Transporte/genética , Homeostase , Humanos , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias/genética , Espécies Reativas de Oxigênio/metabolismo
7.
PLoS One ; 16(2): e0245174, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33544710

RESUMO

Reproductive organs and developing tissues have high energy demands that require metabolic functions primarily supported by mitochondria function. The highly conserved CISD/NEET iron-sulfur (Fe-S) protein family regulates iron and reactive oxygen homeostasis, both of which are important for mitochondrial function. Disruption of iron and reactive oxygen homeostasis typically leads to detrimental effects. In humans, CISD dysfunction is associated with human health issues including Wolfram syndrome 2. Using C. elegans, we previously determined that the cisd-1, cisd-3.1 and cisd-3.2 have an overlapping role in the regulation of physiological germline apoptosis through the canonical programmed cell death pathway. Here, we isolated the cisd-3.2(pnIs68) mutant that resulted in physiological and fitness defects including germline abnormalities that are associated with abnormal stem cell niche and disrupted formation of bivalent chromosomes. The cisd-3.2(pnIs68) mutation led to complete disruption of the cisd-3.2 gene expression and a decrease in expression of genetically intact cisd-1 and cisd-3.1 genes suggesting an indirect impact of the cisd-3.2(pnIs68) allele. The CISD-3.2 and CISD-3.1 proteins localize to the mitochondria in many tissues throughout development. The cisd-3.2(pnIs68) mutant displays phenotypes associated with mitochondrial dysfunction, including disruption of the mitochondrial network within the germline. These results further support the idea that the CISD protein family is required for mitochondrial function that supports important functions in animals including overall fitness and germline viability.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas Ferro-Enxofre/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética
8.
Arterioscler Thromb Vasc Biol ; 41(2): 808-814, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33267655

RESUMO

OBJECTIVE: The objective of this study is to determine the role of SPA (surfactant protein A) in vascular smooth muscle cell (SMC) phenotypic modulation and vascular remodeling. Approach and Results: PDGF-BB (Platelet-derived growth factor-BB) and serum induced SPA expression while downregulating SMC marker gene expression in SMCs. SPA deficiency increased the contractile protein expression. Mechanistically, SPA deficiency enhanced the expression of myocardin and TGF (transforming growth factor)-ß, the key regulators for contractile SMC phenotype. In vivo, SPA was induced in medial and neointimal SMCs following mechanical injury in both rat and mouse carotid arteries. SPA knockout in mice dramatically attenuated the wire injury-induced intimal hyperplasia while restoring SMC contractile protein expression in medial SMCs. These data indicate that SPA plays an important role in SMC phenotype modulation and vascular remodeling in vivo. CONCLUSIONS: SPA is a novel protein factor modulating SMC phenotype. Blocking the abnormal elevation of SPA may be a potential strategy to inhibit the development of proliferative vascular diseases.


Assuntos
Lesões das Artérias Carótidas/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteína A Associada a Surfactante Pulmonar/genética , Remodelação Vascular , Animais , Becaplermina/farmacologia , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Células Cultivadas , Modelos Animais de Doenças , Hiperplasia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Neointima , Proteínas Nucleares/metabolismo , Fenótipo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Transativadores/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Remodelação Vascular/efeitos dos fármacos
9.
Biochim Biophys Acta Mol Cell Res ; 1867(11): 118805, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32745723

RESUMO

NEET proteins belong to a highly conserved group of [2Fe-2S] proteins found across all kingdoms of life. Due to their unique [2Fe2S] cluster structure, they play a key role in the regulation of many different redox and oxidation processes. In eukaryotes, NEET proteins are localized to the mitochondria, endoplasmic reticulum (ER) and the mitochondrial-associated membranes connecting these organelles (MAM), and are involved in the control of multiple processes, ranging from autophagy and apoptosis to ferroptosis, oxidative stress, cell proliferation, redox control and iron and iron­sulfur homeostasis. Through their different functions and interactions with key proteins such as VDAC and Bcl-2, NEET proteins coordinate different mitochondrial, MAM, ER and cytosolic processes and functions and regulate major signaling molecules such as calcium and reactive oxygen species. Owing to their central role in cells, NEET proteins are associated with numerous human maladies including cancer, metabolic diseases, diabetes, obesity, and neurodegenerative diseases. In recent years, a new and exciting role for NEET proteins was uncovered, i.e., the regulation of mitochondrial dynamics and morphology. This new role places NEET proteins at the forefront of studies into cancer and different metabolic diseases, both associated with the regulation of mitochondrial dynamics. Here we review recent studies focused on the evolution, biological role, and structure of NEET proteins, as well as discuss different studies conducted on NEET proteins function using transgenic organisms. We further discuss the different strategies used in the development of drugs that target NEET proteins, and link these with the different roles of NEET proteins in cells.


Assuntos
Cálcio/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/genética , Retículo Endoplasmático/metabolismo , Humanos , Ferro/química , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Mitocôndrias/metabolismo , Ligação Proteica/genética
10.
Am J Physiol Cell Physiol ; 319(2): C316-C320, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32639871

RESUMO

Pulmonary surfactant is a heterogeneous active surface complex made up of lipids and proteins. The major glycoprotein in surfactant is surfactant protein A (SP-A), which is released into the alveolar lumen from cytoplasmic lamellar bodies in type II alveolar epithelial cells. SP-A is involved in phospholipid absorption. SP-A together with other surfactant proteins and phospholipids prevent alveolar collapse during respiration by decreasing the surface tension of the air-liquid interface. Additionally, SP-A interacts with pathogens to prevent their propagation and regulate host immune responses. Studies in human and animal models have shown that deficiencies or mutations in surfactant components result in various lung or kidney pathologies, suggesting a role for SP-A in the development of lung and kidney diseases. In this mini-review, we discuss the current understanding of SP-A functions, recent findings of its dysfunction in specific lung and kidney pathologies, and how SP-A has been used as a biomarker to detect the outcome of lung diseases.


Assuntos
Nefropatias/genética , Pneumopatias/genética , Alvéolos Pulmonares/metabolismo , Proteína A Associada a Surfactante Pulmonar/genética , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Citoplasma/genética , Citoplasma/metabolismo , Progressão da Doença , Humanos , Rim/metabolismo , Rim/patologia , Nefropatias/patologia , Pulmão/metabolismo , Pulmão/patologia , Pneumopatias/patologia , Alvéolos Pulmonares/patologia , Surfactantes Pulmonares/metabolismo
11.
Cell Death Differ ; 26(1): 162-178, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666474

RESUMO

Programmed cell death, which occurs through a conserved core molecular pathway, is important for fundamental developmental and homeostatic processes. The human iron-sulfur binding protein NAF-1/CISD2 binds to Bcl-2 and its disruption in cells leads to an increase in apoptosis. Other members of the CDGSH iron sulfur domain (CISD) family include mitoNEET/CISD1 and Miner2/CISD3. In humans, mutations in CISD2 result in Wolfram syndrome 2, a disease in which the patients display juvenile diabetes, neuropsychiatric disorders and defective platelet aggregation. The C. elegans genome contains three previously uncharacterized cisd genes that code for CISD-1, which has homology to mitoNEET/CISD1 and NAF-1/CISD2, and CISD-3.1 and CISD-3.2, both of which have homology to Miner2/CISD3. Disrupting the function of the cisd genes resulted in various germline abnormalities including distal tip cell migration defects and a significant increase in the number of cell corpses within the adult germline. This increased germ cell death is blocked by a gain-of-function mutation of the Bcl-2 homolog CED-9 and requires functional caspase CED-3 and the APAF-1 homolog CED-4. Furthermore, the increased germ cell death is facilitated by the pro-apoptotic, CED-9-binding protein CED-13, but not the related EGL-1 protein. This work is significant because it places the CISD family members as regulators of physiological germline programmed cell death acting through CED-13 and the core apoptotic machinery.


Assuntos
Apoptose/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Células Germinativas/metabolismo , Animais , Apoptose/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Caspases/metabolismo , Família Multigênica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
12.
G3 (Bethesda) ; 6(10): 3149-3160, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27507791

RESUMO

Individuals with type 2 diabetes display metabolic abnormalities, such as hyperglycemia, increased free fatty acids, insulin resistance, and altered ceramide levels, that contribute to vascular dysfunctions and compromised oxygen delivery. Caenorhabditis elegans fed a glucose-supplemented diet or with altered ceramide metabolism, due to a hyl-2 mutation, are sensitive to oxygen deprivation (anoxia). Our experiments showed that the combination of these factors further decreased the anoxia survival. RNA-sequencing analysis was performed to assess how a glucose-supplemented diet and/or a hyl-2 mutation altered the transcriptome. Comparison analysis of transcripts associated with anoxia-sensitive animals [hyl-2(tm2031) mutation or a glucose diet] revealed 199 common transcripts encoded by genes with known or predicted functions involving innate immunity, cuticle function (collagens), or xenobiotic and endobiotic phase I and II detoxification system. Use of RNA interference (RNAi) to target gene products of the xenobiotic and endobiotic phase I and II detoxification system (UDP-glycosyltransferase and Cytochrome p450 genes; ugt-15, ugt-18, ugt-19, ugt-41, ugt-63, cyp-13A12, cyp-25A1, and cyp-33C8) increased anoxia survival in wild-type animals fed a standard diet. Anoxia sensitivity of the hyl-2(tm2031) animals was suppressed by RNAi of cyp-25A1 or cyp-33C8 genes. A glucose diet fed to the P0 hermaphrodite decreased the anoxia survival of its F1 embryos; however, the RNAi of ugt-63 and cyp-33C8 suppressed anoxia sensitivity. These studies provide evidence that the detoxification system impacts oxygen deprivation responses and that C. elegans can be used to model the conserved detoxification system.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ceramidas/biossíntese , Perfilação da Expressão Gênica , Glucose/biossíntese , Oxigênio/metabolismo , Transdução de Sinais , Transcriptoma , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Técnicas de Silenciamento de Genes , Hipóxia/genética , Hipóxia/metabolismo , Metabolismo dos Lipídeos , Masculino , Desintoxicação Metabólica Fase I/genética , Desintoxicação Metabólica Fase II/genética , Mutação , Fenótipo , Xenobióticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...