Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0291393, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38289939

RESUMO

Thermal performance curves (TPCs) depict variation in vital rates in response to temperature and have been an important tool to understand ecological and evolutionary constraints on the thermal sensitivity of ectotherms. TPCs allow for the calculation of indicators of thermal tolerance, such as minimum, optimum, and maximum temperatures that allow for a given metabolic function. However, these indicators are computed using only responses from surviving individuals, which can lead to underestimation of deleterious effects of thermal stress, particularly at high temperatures. Here, we advocate for an integrative framework for assessing thermal sensitivity, which combines both vital rates and survival probabilities, and focuses on the temperature interval that allows for population persistence. Using a collated data set of Lepidopteran development rate and survival measured on the same individuals, we show that development rate is generally limiting at low temperatures, while survival is limiting at high temperatures. We also uncover differences between life stages and across latitudes, with extended survival at lower temperatures in temperate regions. Our combined performance metric demonstrates similar thermal breadth in temperate and tropical individuals, an effect that only emerges from integration of both development and survival trends. We discuss the benefits of using this framework in future predictive and management contexts.


Assuntos
Temperatura Baixa , Insetos , Humanos , Animais , Temperatura
2.
J Exp Biol ; 226(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37338185

RESUMO

Extreme high temperatures associated with climate change can affect species directly, and indirectly through temperature-mediated species interactions. In most host-parasitoid systems, parasitization inevitably kills the host, but differences in heat tolerance between host and parasitoid, and between different hosts, may alter their interactions. Here, we explored the effects of extreme high temperatures on the ecological outcomes - including, in some rare cases, escape from the developmental disruption of parasitism - of the parasitoid wasp, Cotesia congregata, and two co-occurring congeneric larval hosts, Manduca sexta and M. quinquemaculata. Both host species had higher thermal tolerance than C. congregata, resulting in a thermal mismatch characterized by parasitoid (but not host) mortality under extreme high temperatures. Despite parasitoid death at high temperatures, hosts typically remain developmentally disrupted from parasitism. However, high temperatures resulted in a partial developmental recovery from parasitism (reaching the wandering stage at the end of host larval development) in some host individuals, with a significantly higher frequency of this partial developmental recovery in M. quinquemaculata than in M. sexta. Hosts species also differed in their growth and development in the absence of parasitoids, with M. quinquemaculata developing faster and larger at high temperatures relative to M. sexta. Our results demonstrate that co-occurring congeneric species, despite shared environments and phylogenetic histories, can vary in their responses to temperature, parasitism and their interaction, resulting in altered ecological outcomes.


Assuntos
Interações Hospedeiro-Parasita , Vespas , Humanos , Animais , Filogenia , Especificidade da Espécie , Vespas/fisiologia , Larva
3.
Ecol Evol ; 13(2): e9848, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36844672

RESUMO

Feeding for most animals involves bouts of active ingestion alternating with bouts of no ingestion. In insects, the temporal patterning of bouts varies widely with resource quality and is known to affect growth, development time, and fitness. However, the precise impacts of resource quality and feeding behavior on insect life history traits are poorly understood. To explore and better understand the connections between feeding behavior, resource quality, and insect life history traits, we combined laboratory experiments with a recently proposed mechanistic model of insect growth and development for a larval herbivore, Manduca sexta. We ran feeding trials for 4th and 5th instar larvae across different diet types (two hostplants and artificial diet) and used these data to parameterize a joint model of age and mass at maturity that incorporates both insect feeding behavior and hormonal activity. We found that the estimated durations of both feeding and nonfeeding bouts were significantly shorter on low-quality than on high-quality diets. We then explored how well the fitted model predicted historical out-of-sample data on age and mass of M. sexta. We found that the model accurately described qualitative outcomes for the out-of-sample data, notably that a low-quality diet results in reduced mass and later age at maturity compared with high-quality diets. Our results clearly demonstrate the importance of diet quality on multiple components of insect feeding behavior (feeding and nonfeeding) and partially validate a joint model of insect life history. We discuss the implications of these findings with respect to insect herbivory and discuss ways in which our model could be improved or extended to other systems.

4.
Front Insect Sci ; 3: 1237624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38469516

RESUMO

The interaction between larval host plant quality and temperature can influence the short-term physiological rates and life-history traits of insect herbivores. These factors can vary locally, resulting in local adaptation in responses to diet and temperature, but the comparison of these interactions between populations is infrequently carried out. In this study, we examine how the macronutrient ratio of an artificial diet determines the larval growth, development, and survival of larval Pieris rapae (Lepidoptera: Pieridae) at different temperatures between two invasive North American populations from different climatic regions. We conducted a fully factorial experiment with three temperature treatments (18°C, 25°C, and 32°C) and three artificial diet treatments varying in terms of the ratio of protein to carbohydrate (low protein, balanced, and high protein). The effects of diet on life-history traits were greater at lower temperatures, but these differed between populations. Larvae from the subtropical population had reduced survival to pupation on the low-protein diet in the cold temperature treatment, whereas larval survival for the temperate population was equally high for all temperature and diet treatments. Overall, both populations performed more poorly (i.e., they showed slower rates of consumption, growth, and development, and had a smaller pupal mass) in the diet with the low protein ratio, but larvae from the temperate population were less sensitive to diet ratio changes at all temperatures. Our results confirm that the physiological and life-history consequences of imbalanced nutrition for insect herbivores may depend on developmental temperatures, and that different geographic populations of P. rapae within North America vary in their sensitivity to nutritional balance and temperature.

5.
Ecol Evol ; 12(3): e8618, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342573

RESUMO

When thermal tolerances differ between interacting species, extreme temperature events (heat waves) will alter the ecological outcomes. The parasitoid wasp Cotesia congregata suffers high mortality when reared throughout development at temperatures that are nonstressful for its host, Manduca sexta. However, the effects of short-term heat stress during parasitoid development are unknown in this host-parasitoid system.Here, we investigate how duration of exposure, daily maximum temperature, and the developmental timing of heat waves impact the performance of C. congregata and its host¸ M. sexta. We find that the developmental timing of short-term heat waves strongly determines parasitoid and host outcomes.Heat waves during parasitoid embryonic development resulted in complete wasp mortality and the production of giant, long-lived hosts. Heat waves during the 1st-instar had little effect on wasp success, whereas heat waves during the parasitoid's nutritionally and hormonally critical 2nd instar greatly reduced wasp emergence and eclosion. The temperature and duration of heat waves experienced early in development determined what proportion of hosts had complete parasitoid mortality and abnormal phenotypes.Our results suggest that the timing of extreme temperature events will be crucial to determining the ecological impacts on this host-parasitoid system. Discrepancies in thermal tolerance between interacting species and across development will have important ramifications on ecosystem responses to climate change.

6.
Curr Biol ; 32(4): 861-869.e8, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35016007

RESUMO

In nature, plant-insect interactions occur in complex settings involving multiple trophic levels, often with multiple species at each level.1 Herbivore attack of a host plant typically dramatically alters the plant's odor emission in terms of concentration and composition.2,3 Therefore, a well-adapted herbivore should be able to predict whether a plant is still suitable as a host by judging these changes in the emitted bouquet. Although studies have demonstrated that oviposition preferences of successive insects were affected by previous infestations,4,5 the underlying molecular and olfactory mechanisms remain unknown. Here, we report that tobacco hawkmoths (Manduca sexta) preferentially oviposit on Jimson weed (Datura wrightii) that is already infested by a specialist, the three-lined potato beetle (Lema daturaphila). Interestingly, the moths' offspring do not benefit directly, as larvae develop more slowly when feeding together with Lema beetles. However, one of M. sexta's main enemies, the parasitoid wasp Cotesia congregata, prefers the headspace of M. sexta-infested plants to that of plants infested by both herbivores. Hence, we conclude that female M. sexta ignore the interspecific competition with beetles and oviposit deliberately on beetle-infested plants to provide their offspring with an enemy-reduced space, thus providing a trade-off that generates a net benefit to the survival and fitness of the subsequent generation. We identify that α-copaene, emitted by beetle-infested Datura, plays a role in this preference. By performing heterologous expression and single-sensillum recordings, we show that odorant receptor (Or35) is involved in α-copaene detection.


Assuntos
Besouros , Datura , Manduca , Mariposas , Animais , Datura/metabolismo , Feminino , Herbivoria , Insetos , Oviposição
7.
Am Nat ; 198(3): 437, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34403323
8.
J Exp Biol ; 224(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34424973

RESUMO

Climate change is increasing the frequency of heat waves and other extreme weather events experienced by organisms. How does the number and developmental timing of heat waves affect survival, growth and development of insects? Do heat waves early in development alter performance later in development? We addressed these questions using experimental heat waves with larvae of the tobacco hornworm, Manduca sexta. The experiments used diurnally fluctuating temperature treatments differing in the number (0-3) and developmental timing (early, middle and/or late in larval development) of heat waves, in which a single heat wave involved three consecutive days with a daily maximum temperature of 42°C. Survival to pupation declined with increasing number of heat waves. Multiple (but not single) heat waves significantly reduced development time and pupal mass; the best models for the data indicated that both the number and developmental timing of heat waves affected performance. In addition, heat waves earlier in development significantly reduced growth and development rates later in larval development. Our results illustrate how the frequency and developmental timing of sublethal heat waves can have important consequences for life history traits in insects.


Assuntos
Manduca , Animais , Temperatura Alta , Larva , Pupa , Temperatura
9.
J Exp Biol ; 224(Pt 7)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33653725

RESUMO

Climate change is increasing the frequency of heat waves and other extreme weather events experienced by organisms. How does the number and developmental timing of heat waves affect survival, growth and development of insects? Do heat waves early in development alter performance later in development? We addressed these questions using experimental heat waves with larvae of the tobacco hornworm, Manduca sexta. The experiments used diurnally fluctuating temperature treatments differing in the number (0-3) and developmental timing (early, middle and/or late in larval development) of heat waves, in which a single heat wave involved three consecutive days with a daily maximum temperature of 42°C. Survival to pupation declined with increasing number of heat waves. Multiple (but not single) heat waves significantly reduced development time and pupal mass; the best models for the data indicated that both the number and developmental timing of heat waves affected performance. In addition, heat waves earlier in development significantly reduced growth and development rates later in larval development. Our results illustrate how the frequency and developmental timing of sublethal heat waves can have important consequences for life history traits in insects.


Assuntos
Manduca , Animais , Temperatura Alta , Larva , Pupa , Temperatura
10.
Am Nat ; 196(2): 227-240, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32673092

RESUMO

Variation in age and mass at maturity is commonly observed in populations, even among individuals with the same genetic and environmental backgrounds. Accounting for such individual variation with a stochastic model is important for estimating optimal evolutionary strategies and for understanding potential trade-offs among life-history traits. However, most studies employ stochastic models that are either phenomenological or account for variation in only one life-history trait. We propose a model based on the developmental biology of the moth Manduca sexta that accounts for stochasticity in two key life-history traits, age and mass at maturity. The model is mechanistic, describing feeding behavior and common insect developmental processes, including the degradation of juvenile hormone prior to molting. We derive a joint probability density function for the model and explore how the distribution of age and mass at maturity is affected by different parameter values. We find that the joint distribution is generally nonnormal and highly sensitive to parameter values. In addition, our model predicts previously observed effects of temperature change and nutritional quality on the expected values of insect age and mass. Our results highlight the importance of integrating multiple sources of stochasticity into life-history models.


Assuntos
Peso Corporal , Manduca/crescimento & desenvolvimento , Modelos Estatísticos , Envelhecimento , Fenômenos Fisiológicos da Nutrição Animal , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Características de História de Vida , Manduca/fisiologia , Processos Estocásticos
11.
Curr Opin Insect Sci ; 41: 17-24, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32599547

RESUMO

Insects have distinct life stages that can differ in their responses to environmental factors. We discuss empirical evidence and theoretical models for ontogenetic variation in thermal sensitivity and performance curves (TPCs). Data on lower thermal limits for development (T0) demonstrate variation between stages within a species that is of comparable magnitude to variation among species; we illustrate the consequences of such ontogenetic variation for developmental responses to changing temperature. Ontogenetic variation in optimal temperatures and upper thermal limits has been reported in some systems, but current data are too limited to identify general patterns. The shapes of TPCs for different fitness components such as juvenile survival, adult fecundity, and generation time differ in characteristic ways, with important consequences for understanding fitness in varying thermal environments. We highlight a theoretical framework for incorporating ontogenetic variation into process-based models of population responses to seasonal variation and climate change.


Assuntos
Mudança Climática , Insetos/fisiologia , Estágios do Ciclo de Vida , Temperatura , Adaptação Fisiológica , Animais , Fertilidade/fisiologia , Insetos/crescimento & desenvolvimento
12.
Ecol Lett ; 23(7): 1129-1136, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32333476

RESUMO

Anthropogenic climate change alters seasonal conditions without altering photoperiod and can thus create a cue-environment mismatch for organisms that use photoperiod as a cue for seasonal plasticity. We investigated whether evolution of the photoperiodic reaction norm has compensated for this mismatch in Colias eurytheme. This butterfly's wing melanization has a thermoregulatory function and changes seasonally. In 1971, Hoffmann quantified how larval photoperiod determines adult wing melanization. We recreated his experiment 47 years later using a contemporary population. Comparing our results to his, we found decreased melanization at short photoperiods but no change in melanization at long photoperiods, which is consistent with the greater increase in spring than summer temperatures recorded for this region. Our study shows that evolution can help correct cue-environment mismatches but not in the same way under all conditions. Studies of contemporary evolution may miss important changes if they focus on only a limited range of conditions.


Assuntos
Borboletas , Animais , Mudança Climática , Sinais (Psicologia) , Fotoperíodo , Estações do Ano , Asas de Animais
13.
J Exp Biol ; 223(Pt 7)2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127377

RESUMO

High temperatures can negatively impact the performance and survival of organisms, particularly ectotherms. While an organism's response to high temperature stress clearly depends on current thermal conditions, its response may also be affected by the temporal pattern and duration of past temperature exposures. We used RNA sequencing of Manduca sexta larvae fat body tissue to evaluate how diurnal temperature fluctuations during development affected gene expression both independently and in conjunction with subsequent heat stress. Additionally, we compared gene expression between two M. sexta populations, a lab colony and a genetically related field population that have been separated for >300 generations and differ in their thermal sensitivities. Lab-adapted larvae were predicted to show increased expression responses to both single and repeated thermal stress, whereas recurrent exposure could decrease later stress responses for field individuals. We found large differences in overall gene expression patterns between the two populations across all treatments, as well as population-specific transcriptomic responses to temperature; more differentially expressed genes were upregulated in the field compared with lab larvae. Developmental temperature fluctuations alone had minimal effects on long-term gene expression patterns, with the exception of a somewhat elevated stress response in the lab population. Fluctuating rearing conditions did alter gene expression during exposure to later heat stress, but this effect depended on both the population and the particular temperature conditions. This study contributes to increased knowledge of molecular mechanisms underlying physiological responses of organisms to temperature fluctuations, which is needed for the development of more accurate thermal performance models.


Assuntos
Manduca , Adaptação Fisiológica , Animais , Resposta ao Choque Térmico/genética , Temperatura Alta , Humanos , Manduca/genética , Temperatura
14.
Ecol Evol ; 10(24): 13980-13989, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33391696

RESUMO

Diurnal fluctuations in temperature are ubiquitous in terrestrial environments, and insects and other ectotherms have evolved to tolerate or acclimate to such fluctuations. Few studies have examined whether ectotherms acclimate to diurnal temperature fluctuations, or how natural and domesticated populations differ in their responses to diurnal fluctuations. We examine how diurnally fluctuating temperatures during development affect growth, acclimation, and stress responses for two populations of Manduca sexta: a field population that typically experiences wide variation in mean and fluctuations in temperature, and a laboratory population that has been domesticated in nearly constant temperatures for more than 300 generations. Laboratory experiments showed that diurnal fluctuations throughout larval development reduced pupal mass for the laboratory but not the field population. The differing effects of diurnal fluctuations were greatest at higher mean temperature (30°C): Here diurnal fluctuations reduced pupal mass and increased pupal development time for the laboratory population, but had little effect for the field population. We also evaluated how mean and fluctuations in temperature during early larval development affected growth rate during the final larval instar as a function of test temperature. At an intermediate (25°C) mean temperature, both the laboratory and field population showed a positive acclimation response to diurnal fluctuations, in which subsequent growth rate was significantly higher at most test temperatures. In contrast at higher mean temperature (30°C), diurnal fluctuations significantly reduced subsequent growth rate at most test temperatures for the laboratory population, but not for the field population. These results suggest that during domestication in constant temperatures, the laboratory population has lost the capacity to tolerate or acclimate to high and fluctuating temperatures. Population differences in acclimation capacity in response to temperature fluctuations have not been previously demonstrated, but they may be important for understanding the evolution of reaction norms and performance curves.

15.
Am Nat ; 194(6): E140-E150, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31738103

RESUMO

Climate warming may lower environmental resource levels, growth, and fitness of many ectotherms. In a classic experiment, Brett and colleagues documented that growth rates of salmon depended strikingly on both temperature and food levels. Here we develop a simple bioenergetic model that explores how fixed temperatures and food jointly alter the thermal sensitivity of net energy gain. The model incorporates differing thermal sensitivities of energy intake and metabolism. In qualitative agreement with Brett's results, it predicts that decreased food intake reduces growth rates, lowers optimal temperatures for growth, and lowers the highest temperatures sustaining growth (upper thermal limit). Consequently, ectotherms facing reduced food intake in warm environments should restrict activity to times when low body temperatures are biophysically feasible, but-in a warming world-that will force ectotherms to shorten activity times and thus further reduce food intake. This "metabolic meltdown" is a consequence of declining energy intake coupled with accelerating metabolic costs at high temperatures and with warming-imposed restrictions on activity. Next, we extend the model to explore how increasing mean environmental temperatures alter the thermal sensitivity of growth: when food intake is reduced, optimal temperatures and upper thermal limits for growth are lowered. We discuss our model's key assumptions and caveats as well as its relationship to a recent model for phytoplankton. Both models illustrate that the deleterious impacts of climate warming on ectotherms will be amplified if food intake is also reduced, either because warming reduces standing food resources or because it restricts foraging time.


Assuntos
Temperatura Corporal/fisiologia , Aquecimento Global , Invertebrados/fisiologia , Vertebrados/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Ingestão de Energia , Invertebrados/crescimento & desenvolvimento , Invertebrados/metabolismo , Modelos Teóricos , Vertebrados/crescimento & desenvolvimento , Vertebrados/metabolismo
16.
Proc Biol Sci ; 286(1907): 20191332, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31337312

RESUMO

Reductions in animal body size over recent decades are often interpreted as an adaptive evolutionary response to climate warming. However, for reductions in size to reflect adaptive evolution, directional selection on body size within populations must have become negative, or where already negative, to have become more so, as temperatures increased. To test this hypothesis, we performed traditional and phylogenetic meta-analyses of the association between annual estimates of directional selection on body size from wild populations and annual mean temperatures from 39 longitudinal studies. We found no evidence that warmer environments were associated with selection for smaller size. Instead, selection consistently favoured larger individuals, and was invariant to temperature. These patterns were similar in ectotherms and endotherms. An analysis using year rather than temperature revealed similar patterns, suggesting no evidence that selection has changed over time, and also indicating that the lack of association with annual temperature was not an artefact of choosing an erroneous time window for aggregating the temperature data. Although phenotypic trends in size will be driven by a combination of genetic and environmental factors, our results suggest little evidence for a necessary ingredient-negative directional selection-for declines in body size to be considered an adaptive evolutionary response to changing selection pressures.


Assuntos
Tamanho Corporal/fisiologia , Temperatura Alta , Seleção Genética/fisiologia , Vertebrados/fisiologia , Animais , Tamanho Corporal/genética , Vertebrados/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-30455218

RESUMO

Museum specimens offer a largely untapped resource for detecting morphological shifts in response to climate change. However, morphological shifts can be obscured by shifts in phenology or distribution or sampling biases. Additionally, interpreting phenotypic shifts requires distinguishing whether they result from plastic or genetic changes. Previous studies using collections have documented consistent historical size changes, but the limited studies of other morphological traits have often failed to support, or even test, hypotheses. We explore the potential of collections by investigating shifts in the functionally significant coloration of a montane butterfly, Colias meadii, over the past 60 years within three North American geographical regions. We find declines in ventral wing melanism, which correspond to reduced absorption of solar radiation and thus reduced risk of overheating, in two regions. However, contrary to expected responses to climate warming, we find melanism increases in the most thoroughly sampled region. Relationships among temperature, phenology and morphology vary across years and complicate the distinction between plastic and genetic responses. Differences in these relationships may account for the differing morphological shifts among regions. Our findings highlight the promise of using museum specimens to test mechanistic hypotheses for shifts in functional traits, which is essential for deciphering interacting responses to climate change.This article is part of the theme issue 'Biological collections for understanding biodiversity in the Anthropocene'.


Assuntos
Borboletas/anatomia & histologia , Borboletas/fisiologia , Mudança Climática , Manejo de Espécimes , Alberta , Animais , Borboletas/crescimento & desenvolvimento , Colorado , Museus , Noroeste dos Estados Unidos
18.
Evol Appl ; 11(8): 1231-1244, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30151036

RESUMO

Species have responded to climate change via seasonal (phenological) shifts, morphological plasticity, and evolutionary adaptation, but how these responses contribute to changes and variation in population fitness are poorly understood. We assess the interactions and relative importance of these responses for fitness in a montane butterfly, Colias eriphyle, along an elevational gradient. Because environmental temperatures affect developmental rates of each life stage, populations along the gradients differ in phenological timing and the number of generations each year. Our focal phenotype, wing solar absorptivity of adult butterflies, exhibits local adaptation across elevation and responds plastically to developmental temperatures. We integrate climatic data for the past half-century with microclimate, developmental, biophysical, demographic, and evolutionary models for this system to predict how phenology, plasticity, and evolution contribute to phenotypic and fitness variation along the gradient. We predict that phenological advancements incompletely compensate for climate warming, and also influence morphological plasticity. Climate change is predicted to increase mean population fitness in the first seasonal generation at high elevation, but decrease mean fitness in the summer generations at low elevation. Phenological shifts reduce the interannual variation in directional selection and morphology, but do not have consistent effects on variation in mean fitness. Morphological plasticity and its evolution can substantially increase population fitness and adaptation to climate change at low elevations, but environmental unpredictability limits adaptive plastic and evolutionary responses at high elevations. Phenological shifts also decrease the relative fitness advantages of morphological plasticity and evolution. Our results illustrate how the potential contributions of phenological and morphological plasticity and of evolution to climate change adaptation can vary along environmental gradients and how environmental variability will limit adaptive responses to climate change in montane regions.

19.
J Exp Biol ; 221(Pt 12)2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29724777

RESUMO

Critical temperatures are widely used to quantify the upper and lower thermal limits of organisms. But measured critical temperatures often vary with methodological details, leading to spirited discussions about the potential consequences of stress and acclimation during the experiments. We review a model based on the simple assumption that failure rate increases with increasing temperature, independent of previous temperature exposure, water loss or metabolism during the experiment. The model predicts that mean critical thermal maximal temperature (CTmax) increases non-linearly with starting temperature and ramping rate, a pattern frequently observed in empirical studies. We then develop a statistical model that estimates a failure rate function (the relationship between failure rate and current temperature) using maximum likelihood; the best model accounts for 58% of the variation in CTmax in an exemplary dataset for tsetse flies. We then extend the model to incorporate potential effects of stress and acclimation on the failure rate function; the results show how stress accumulation at low ramping rate may increase the failure rate and reduce observed values of CTmax We also applied the model to an acclimation experiment with hornworm larvae that used a single starting temperature and ramping rate; the analyses show that increasing acclimation temperature significantly reduced the slope of the failure rate function, increasing the temperature at which failure occurred. The model directly applies to critical thermal minima, and can utilize data from both ramping and constant-temperature assays. Our model provides a new approach to analyzing and interpreting critical temperatures.


Assuntos
Aclimatação , Manduca/fisiologia , Temperatura , Moscas Tsé-Tsé/fisiologia , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Manduca/crescimento & desenvolvimento , Modelos Biológicos , Modelos Estatísticos
20.
Science ; 359(6374)2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29371442

RESUMO

The comment by Myers-Smith and Myers focuses on three main points: (i) the lack of a mechanistic explanation for climate-selection relationships, (ii) the appropriateness of the climate data used in our analysis, and (iii) our focus on estimating climate-selection relationships across (rather than within) taxonomic groups. We address these critiques in our response.


Assuntos
Clima , Seleção Genética , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...