Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37796612

RESUMO

Although SARS-CoV-2 evolution seeds a continuous stream of antibody-evasive viral variants, COVID-19 mRNA vaccines provide robust protection against severe disease and hospitalization. Here, we asked whether mRNA vaccine-induced memory T cells limit lung SARS-CoV-2 replication and severe disease. We show that mice and humans receiving booster BioNTech mRNA vaccine developed potent CD8 T cell responses and showed similar kinetics of expansion and contraction of granzyme B/perforin-expressing effector CD8 T cells. Both monovalent and bivalent mRNA vaccines elicited strong expansion of a heterogeneous pool of terminal effectors and memory precursor effector CD8 T cells in spleen, inguinal and mediastinal lymph nodes, pulmonary vasculature, and most surprisingly in the airways, suggestive of systemic and regional surveillance. Furthermore, we document that: (a) CD8 T cell memory persists in multiple tissues for > 200 days; (b) following challenge with pathogenic SARS-CoV-2, circulating memory CD8 T cells rapidly extravasate to the lungs and promote expeditious viral clearance, by mechanisms that require CD4 T cell help; and (c) adoptively transferred splenic memory CD8 T cells traffic to the airways and promote lung SARS-CoV-2 clearance. These findings provide insights into the critical role of memory T cells in preventing severe lung disease following breakthrough infections with antibody-evasive SARS-CoV-2 variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Animais , Camundongos , Células T de Memória , COVID-19/prevenção & controle , SARS-CoV-2 , Pulmão
2.
Microorganisms ; 11(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630665

RESUMO

Mycobacterium tuberculosis (M. tuberculosis) remains a significant global health threat, accounting for ~1.7 million deaths annually. The efficacy of the current vaccine, M. bovis BCG, ranges from 0 to 80% in children and does not prevent adulthood tuberculosis. We explored the immune profile and safety of a live-attenuated M. tuberculosis construct with double deletions of the mosR and echA7 genes, where previously, single mutations were protective against an M. tuberculosis aerosol challenge. Over 32 weeks post-vaccination (WPV), immunized mice with M. tuberculosisΔmosRΔechA7 (double mutant) were sacrificed to evaluate the vaccine persistence, histopathology, and immune responses. Interestingly, despite similar tissue colonization between the vaccine double mutant and wild-type M. tuberculosis, the vaccine construct showed a greater reaction to the ESAT-6, TB.10, and Ag85B antigens with peptide stimulation. Additionally, there was a greater number of antigen-specific CD4 T cells in the vaccine group, accompanied by significant polyfunctional T-cell responses not observed in the other groups. Histologically, mild but widely distributed inflammatory responses were recorded in the livers and lungs of the immunized animals at early timepoints, which turned into organized inflammatory foci via 32WPV, a pathology not observed in BCG-immunized mice. A lower double-mutant dose resulted in significantly less tissue colonization and less tissue inflammation. Overall, the double-mutant vaccine elicited robust immune responses dominated by antigen-specific CD4 T cells, but also triggered tissue damage and vaccine persistence. The findings highlight key features associated with the immunogenicity and safety of the examined vaccine construct that can benefit the future evaluation of other live vaccines.

3.
Vaccines (Basel) ; 11(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36851180

RESUMO

Infectious bronchitis (IB) is an acute respiratory disease of chickens caused by the avian coronavirus Infectious Bronchitis Virus (IBV). Modified Live Virus (MLV) vaccines used commercially can revert to virulence in the field, recombine with circulating serotypes, and cause tissue damage in vaccinated birds. Previously, we showed that a mucosal adjuvant system, QuilA-loaded Chitosan (QAC) nanoparticles encapsulating plasmid vaccine encoding for IBV nucleocapsid (N), is protective against IBV. Herein, we report a heterologous vaccination strategy against IBV, where QAC-encapsulated plasmid immunization is followed by Modified Vaccinia Ankara (MVA) immunization, both expressing the same IBV-N antigen. This strategy led to the initiation of robust T-cell responses. Birds immunized with the heterologous vaccine strategy had reduced clinical severity and >two-fold reduction in viral burden in lachrymal fluid and tracheal swabs post-challenge compared to priming and boosting with the MVA-vectored vaccine alone. The outcomes of this study indicate that the heterologous vaccine platform is more immunogenic and protective than a homologous MVA prime/boost vaccination strategy.

4.
J Immunol Res ; 2022: 6789055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033397

RESUMO

FoxP3+ regulatory T cells (Tregs) are essential for self-tolerance and moderating tissue-damaging inflammation. Tregs that develop and mature in the thymus are classified as central Tregs or effector Tregs based on whether Tregs predominately inhabit secondary lymphoid organs (central Tregs) or tissues (effector Tregs). By generating mice that are conditionally deficient for Bach2 in peripheral Tregs, we have examined the role of Bach2 in regulating Treg homeostasis and effector functions. Unlike global and T cell-specific Bach2-deficient mice, Treg-specific Bach2 ablation did not result in unprovoked TH2 inflammation in the lungs. However, Bach2 deficiency in Tregs led to augmented expressions of IRF4, BATF, and GATA3 and a significant increase in the accumulation of ST2 (IL-33R)+ve effector Tregs in the spleen and visceral adipose tissue (VAT) but not in the lungs. Enhanced Bach2-deficient Treg numbers in VAT was not linked to hyperresponsiveness to exogenous IL-33 in vivo. Most strikingly, Treg-specific Bach2 deficiency resulted in enhanced fungal protease-induced Type 2 allergic inflammation in the lungs, with no detectable effects on Type 1 responses to systemic or respiratory viral infections. In summary, we ascribe vital roles for Bach2 in peripheral Tregs: as a transcriptional checkpoint to limit precocious differentiation into effector Tregs in lymphoid tissues and as a regulator of the functional program that restrains Type 2 but not Type 1 inflammation in lungs. Results presented in this manuscript implicate dysregulated Tregs in the pathogenesis of airway hypersensitivities, asthma, and other allergic disorders.


Assuntos
Proteínas Fúngicas/imunologia , Hipersensibilidade , Linfócitos T Reguladores , Tecido Adiposo , Alérgenos , Animais , Fatores de Transcrição de Zíper de Leucina Básica , Fatores de Transcrição Forkhead , Inflamação , Camundongos , Camundongos Endogâmicos C57BL
5.
Sci Rep ; 12(1): 10616, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739276

RESUMO

Multiple myeloma (MM) is a malignant plasma cell cancer. Mutations in RAS pathway genes are prevalent in advanced and proteasome inhibitor (PI) refractory MM. As such, we recently developed a VQ MM mouse model recapitulating human advanced/high-risk MM. Using VQ MM cell lines we conducted a repurposing screen of 147 FDA-approved anti-cancer drugs with or without trametinib (Tra), a MEK inhibitor. Consistent with its high-risk molecular feature, VQ MM displayed reduced responses to PIs and de novo resistance to the BCL2 inhibitor, venetoclax. Ponatinib (Pon) is the only tyrosine kinase inhibitor that showed moderate MM killing activity as a single agent and strong synergism with Tra in vitro. Combined Tra and Pon treatment significantly prolonged the survival of VQ MM mice regardless of treatment schemes. However, this survival benefit was moderate compared to that of Tra alone. Further testing of Tra and Pon on cytotoxic CD8+ T cells showed that Pon, but not Tra, blocked T cell function in vitro, suggesting that the negative impact of Pon on T cells may partially counteract its MM-killing synergism with Tra in vivo. Our study provides strong rational to comprehensively evaluate agents on both MM cells and anti-MM immune cells during therapy development.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Imidazóis , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno , Mieloma Múltiplo/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridazinas
6.
Proc Natl Acad Sci U S A ; 119(20): e2118312119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35561224

RESUMO

The first-generation COVID-19 vaccines have been effective in mitigating severe illness and hospitalization, but recurring waves of infections are associated with the emergence of SARS-CoV-2 variants that display progressive abilities to evade antibodies, leading to diminished vaccine effectiveness. The lack of clarity on the extent to which vaccine-elicited mucosal or systemic memory T cells protect against such antibody-evasive SARS-CoV-2 variants remains a critical knowledge gap in our quest for broadly protective vaccines. Using adjuvanted spike protein­based vaccines that elicit potent T cell responses, we assessed whether systemic or lung-resident CD4 and CD8 T cells protected against SARS-CoV-2 variants in the presence or absence of virus-neutralizing antibodies. We found that 1) mucosal or parenteral immunization led to effective viral control and protected against lung pathology with or without neutralizing antibodies, 2) protection afforded by mucosal memory CD8 T cells was largely redundant in the presence of antibodies that effectively neutralized the challenge virus, and 3) "unhelped" mucosal memory CD8 T cells provided no protection against the homologous SARS-CoV-2 without CD4 T cells and neutralizing antibodies. Significantly, however, in the absence of detectable virus-neutralizing antibodies, systemic or lung-resident memory CD4 and "helped" CD8 T cells provided effective protection against the relatively antibody-resistant B1.351 (ß) variant, without lung immunopathology. Thus, induction of systemic and mucosal memory T cells directed against conserved epitopes might be an effective strategy to protect against SARS-CoV-2 variants that evade neutralizing antibodies. Mechanistic insights from this work have significant implications in the development of T cell­targeted immunomodulation or broadly protective SARS-CoV-2 vaccines.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Vacinas contra COVID-19 , COVID-19 , Linfócitos Intraepiteliais , SARS-CoV-2 , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Humanos , Evasão da Resposta Imune , Linfócitos Intraepiteliais/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética
7.
J Immunol Res ; 2022: 5258221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35083342

RESUMO

The peptidylarginine deiminases (PADs) and the citrullinated proteins that they generate have key roles in innate immunity and rheumatoid arthritis, an inflammatory arthritis with antibodies that target citrullinated proteins. However, the importance of PADs, particularly PAD2, in the adaptive immune response, both normal and pathogenic, is newly emerging. In this study, we evaluated a requirement for PAD2 in the antibody response in collagen-induced arthritis (CIA), a T and B cell-driven murine model of rheumatoid arthritis, and in the protective antibody response to murine influenza infection. Using PAD2-/- and PAD2+/+ mice on the DBA/1J background, we found that PAD2 is required for maximal anti-collagen antibody levels, but not collagen-specific plasma cell numbers, T cell activation or polarization, or arthritis severity in CIA. Also, we found that PAD2 is required not just for normal levels of persistent hemagglutination inhibiting antibodies but also for full protection from lethal influenza rechallenge. Together, these data provide evidence for a novel modest requirement for PAD2 in a normal antiviral antibody response and in an abnormal autoantibody response in inflammatory arthritis.


Assuntos
Artrite Reumatoide/imunologia , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Imunidade Adaptativa , Animais , Anticorpos Antiproteína Citrulinada/metabolismo , Formação de Anticorpos , Antivirais , Artrite Experimental/imunologia , Autoanticorpos/sangue , Citrulinação , Humanos , Hidrolases , Imunidade Inata , Camundongos , Camundongos Endogâmicos DBA , Proteína-Arginina Desiminase do Tipo 2/genética
8.
J Virol ; 95(15): e0053021, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33952647

RESUMO

Elicitation of lung tissue-resident memory CD8 T cells (TRMs) is a goal of T cell-based vaccines against respiratory viral pathogens, such as influenza A virus (IAV). C-C chemokine receptor type 2 (CCR2)-dependent monocyte trafficking plays an essential role in the establishment of CD8 TRMs in lungs of IAV-infected mice. Here, we used a combination adjuvant-based subunit vaccine strategy that evokes multifaceted (TC1/TC17/TH1/TH17) IAV nucleoprotein-specific lung TRMs to determine whether CCR2 and monocyte infiltration are essential for vaccine-induced TRM development and protective immunity to IAV in lungs. Following intranasal vaccination, neutrophils, monocytes, conventional dendritic cells (DCs), and monocyte-derived dendritic cells internalized and processed vaccine antigen in lungs. We found that basic leucine zipper ATF-like transcription factor 3 (BATF3)-dependent DCs were essential for eliciting T cell responses, but CCR2 deficiency enhanced the differentiation of CD127hi, KLRG-1lo, OX40+ve CD62L+ve, and mucosally imprinted CD69+ve CD103+ve effector and memory CD8 T cells in lungs and airways of vaccinated mice. Mechanistically, increased development of lung TRMs induced by CCR2 deficiency was linked to dampened expression of T-bet but not altered TCF-1 levels or T cell receptor signaling in CD8 T cells. T1/T17 functional programming, parenchymal localization of CD8/CD4 effector and memory T cells, recall T cell responses, and protective immunity to a lethal IAV infection were unaffected in CCR2-deficient mice. Taken together, we identified a negative regulatory role for CCR2 and monocyte trafficking in mucosal imprinting and differentiation of vaccine-induced TRMs. Mechanistic insights from this study may aid the development of T-cell-based vaccines against respiratory viral pathogens, including IAV and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IMPORTANCE While antibody-based immunity to influenza A virus (IAV) is type and subtype specific, lung- and airway-resident memory T cells that recognize conserved epitopes in the internal viral proteins are known to provide heterosubtypic immunity. Hence, broadly protective IAV vaccines need to elicit robust T cell memory in the respiratory tract. We have developed a combination adjuvant-based IAV nucleoprotein vaccine that elicits strong CD4 and CD8 T cell memory in lungs and protects against H1N1 and H5N1 strains of IAV. In this study, we examined the mechanisms that control vaccine-induced protective memory T cells in the respiratory tract. We found that trafficking of monocytes into lungs might limit the development of antiviral lung-resident memory T cells following intranasal vaccination. These findings suggest that strategies that limit monocyte infiltration can potentiate vaccine-induced frontline T-cell immunity to respiratory viruses, such as IAV and SARS-CoV-2.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade nas Mucosas , Memória Imunológica , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Receptores CCR2/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Vírus da Influenza A/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/farmacologia , Pulmão/imunologia , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/prevenção & controle , Receptores CCR2/genética
9.
bioRxiv ; 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33791695

RESUMO

Elicitation of lung tissue-resident memory CD8 T cells (T RM s) is a goal of T-cell based vaccines against respiratory viral pathogens such as influenza A virus (IAV). Chemokine receptor 2 (CCR2)-dependent monocyte trafficking plays an essential role in the establishment of CD8 T RM s in lungs of IAV-infected mice. Here, we used a combination adjuvant-based subunit vaccine strategy that evokes multifaceted (T C 1/T C 17/T H 1/T H 17) IAV nucleoprotein-specific lung T RM s, to determine whether CCR2 and monocyte infiltration are essential for vaccine-induced T RM development and protective immunity to IAV in lungs. Following intranasal vaccination, neutrophils, monocytes, conventional dendrtitic cells (DCs) and monocyte-derived DCs internalized and processed vaccine antigen in lungs. We also found that Basic Leucine Zipper ATF-Like Transcription Factor 3 (BATF-3)-dependent DCs were essential for eliciting T cell responses, but CCR2 deficiency enhanced the differentiation of CD127 HI /KLRG-1 LO , OX40 +ve CD62L +ve and mucosally imprinted CD69 +ve CD103 +ve effector and memory CD8 T cells in lungs and airways of vaccinated mice. Mechanistically, increased development of lung T RM s, induced by CCR2 deficiency was linked to dampened expression of T-bet, but not altered TCF-1 levels or T cell receptor signaling in CD8 T cells. T1/T17 functional programming, parenchymal localization of CD8/CD4 effector and memory T cells, recall T cell responses and protective immunity to a lethal IAV infection were unaffected in CCR2-deficient mice. Taken together, we identified a negative regulatory role for CCR2 and monocyte trafficking in mucosal imprinting and differentiation of vaccine-induced T RM s. Mechanistic insights from this study may aid the development of T-cell-based vaccines against respiratory viral pathogens including IAV and SARS-CoV-2. IMPORTANCE: While antibody-based immunity to influenza A virus (IAV) is type and sub-type specific, lung and airway-resident memory T cells that recognize conserved epitopes in the internal viral proteins are known to provide heterosubtypic immunity. Hence, broadly protective IAV vaccines need to elicit robust T-cell memory in the respiratory tract. We have developed a combination adjuvant-based IAV nucleoprotein vaccine that elicits strong CD4 and CD8 T cell memory in lungs and protects against H1N1 and H5N1 strains of IAV. In this study, we examined the mechanisms that control vaccine-induced protective memory T cells in the respiratory tract. We found that trafficking of monocytes into lungs might limit the development of anti-viral lung-resident memory T cells, following intranasal vaccination. These findings suggested that strategies that limit monocyte infiltration can potentiate vaccine-induced frontline T-cell immunity to respiratory viruses such as IAV and SARS-CoV-2.

10.
Infect Immun ; 89(7): e0076820, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33782151

RESUMO

The development of T cell-based subunit protein vaccines against diseases such as tuberculosis and malaria remains a challenge for immunologists. Here, we have identified a nanoemulsion adjuvant, Adjuplex (ADJ), which enhanced dendritic cell (DC) cross-presentation and elicited effective memory T cell-based immunity to Listeria monocytogenes. We further evaluated whether cross-presentation induced by ADJ can be combined with the immunomodulatory effects of Toll-like receptor (TLR) agonists (CpG or glucopyranosyl lipid adjuvant [GLA]) to evoke systemic CD8 T cell-based immunity to L. monocytogenes. Mechanistically, vaccination with ADJ, alone or in combination with CpG or GLA, augmented activation and antigen uptake by CD103+ migratory and CD8α+ resident DCs and upregulated CD69 expression on B and T lymphocytes in vaccine-draining lymph nodes. By engaging basic leucine zipper ATF-like transcription factor 3-dependent cross-presenting DCs, ADJ potently elicited effector CD8 T cells that differentiated into granzyme B-expressing CD27LO effector-like memory CD8 T cells, which provided effective immunity to L. monocytogenes in the spleen and liver. CpG or GLA alone did not elicit effector-like memory CD8 T cells and induced moderate protection in the spleen but not in the liver. Surprisingly, combining CpG or GLA with ADJ reduced the number of ADJ-induced memory CD8 T cells and compromised protective immunity to L. monocytogenes, especially in the liver. Taken together, the data presented in this study provide a glimpse of protective CD8 T cell memory differentiation induced by a nanoemulsion adjuvant and demonstrate the unexpected negative effects of TLR signaling on the magnitude of CD8 T cell memory and protective immunity to L. monocytogenes, a model intracellular pathogen.


Assuntos
Adjuvantes Imunológicos , Linfócitos T CD8-Positivos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Memória Imunológica , Listeria/imunologia , Listeriose/imunologia , Listeriose/microbiologia , Biomarcadores , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Imunomodulação , Imunofenotipagem , Listeriose/metabolismo , Transdução de Sinais
11.
PLoS Pathog ; 17(1): e1009168, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444400

RESUMO

There is a critical need for adjuvants that can safely elicit potent and durable T cell-based immunity to intracellular pathogens. Here, we report that parenteral vaccination with a carbomer-based adjuvant, Adjuplex (ADJ), stimulated robust CD8 T-cell responses to subunit antigens and afforded effective immunity against respiratory challenge with a virus and a systemic intracellular bacterial infection. Studies to understand the metabolic and molecular basis for ADJ's effect on antigen cross-presentation by dendritic cells (DCs) revealed several unique and distinctive mechanisms. ADJ-stimulated DCs produced IL-1ß and IL-18, suggestive of inflammasome activation, but in vivo activation of CD8 T cells was unaffected in caspase 1-deficient mice. Cross-presentation induced by TLR agonists requires a critical switch to anabolic metabolism, but ADJ enhanced cross presentation without this metabolic switch in DCs. Instead, ADJ induced in DCs, an unique metabolic state, typified by dampened oxidative phosphorylation and basal levels of glycolysis. In the absence of increased glycolytic flux, ADJ modulated multiple steps in the cytosolic pathway of cross-presentation by enabling accumulation of degraded antigen, reducing endosomal acidity and promoting antigen localization to early endosomes. Further, by increasing ROS production and lipid peroxidation, ADJ promoted antigen escape from endosomes to the cytosol for degradation by proteasomes into peptides for MHC I loading by TAP-dependent pathways. Furthermore, we found that induction of lipid bodies (LBs) and alterations in LB composition mediated by ADJ were also critical for DC cross-presentation. Collectively, our model challenges the prevailing metabolic paradigm by suggesting that DCs can perform effective DC cross-presentation, independent of glycolysis to induce robust T cell-dependent protective immunity to intracellular pathogens. These findings have strong implications in the rational development of safe and effective immune adjuvants to potentiate robust T-cell based immunity.


Assuntos
Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/fisiologia , Resinas Acrílicas/química , Adjuvantes Imunológicos/farmacologia , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , NADPH Oxidase 2/fisiologia , Animais , Apresentação de Antígeno/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Cell Rep Med ; 1(6): 100095, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32984856

RESUMO

Induction of protective mucosal T cell memory remains a formidable challenge to vaccinologists. Using a combination adjuvant strategy that elicits potent CD8 and CD4 T cell responses, we define the tenets of vaccine-induced pulmonary T cell immunity. An acrylic-acid-based adjuvant (ADJ), in combination with Toll-like receptor (TLR) agonists glucopyranosyl lipid adjuvant (GLA) or CpG, promotes mucosal imprinting but engages distinct transcription programs to drive different degrees of terminal differentiation and disparate polarization of TH1/TC1/TH17/TC17 effector/memory T cells. Combination of ADJ with GLA, but not CpG, dampens T cell receptor (TCR) signaling, mitigates terminal differentiation of effectors, and enhances the development of CD4 and CD8 TRM cells that protect against H1N1 and H5N1 influenza viruses. Mechanistically, vaccine-elicited CD4 T cells play a vital role in optimal programming of CD8 TRM and viral control. Taken together, these findings provide further insights into vaccine-induced multifaceted mucosal T cell immunity with implications in the development of vaccines against respiratorypathogens, including influenza virus and SARS-CoV-2.


Assuntos
Adjuvantes de Vacinas/farmacologia , Pulmão/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Resinas Acrílicas/administração & dosagem , Resinas Acrílicas/farmacologia , Adjuvantes de Vacinas/administração & dosagem , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Inflamação , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/farmacologia , Linfócitos Intraepiteliais/efeitos dos fármacos , Linfócitos Intraepiteliais/imunologia , Pulmão/imunologia , Células T de Memória/efeitos dos fármacos , Células T de Memória/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/imunologia , Receptores Toll-Like/agonistas
13.
J Virol ; 94(19)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669327

RESUMO

Infectious bronchitis (IB) caused by infectious bronchitis virus (IBV) is currently a major threat to chicken health, with multiple outbreaks being reported in the United States over the past decade. Modified live virus (MLV) vaccines used in the field can persist and provide the genetic material needed for recombination and emergence of novel IBV serotypes. Inactivated and subunit vaccines overcome some of the limitations of MLV with no risk of virulence reversion and emergence of new virulent serotypes. However, these vaccines are weakly immunogenic and poorly protective. There is an urgent need to develop more effective vaccines that can elicit a robust, long-lasting immune response. In this study, we evaluate a novel adjuvant system developed from Quil-A and chitosan (QAC) for the intranasal delivery of nucleic acid immunogens to improve protective efficacy. The QAC adjuvant system forms nanocarriers (<100 nm) that efficiently encapsulate nucleic acid cargo, exhibit sustained release of payload, and can stably transfect cells. Encapsulation of plasmid DNA vaccine expressing IBV nucleocapsid (N) protein by the QAC adjuvant system (pQAC-N) enhanced immunogenicity, as evidenced by robust induction of adaptive humoral and cellular immune responses postvaccination and postchallenge. Birds immunized with pQAC-N showed reduced clinical severity and viral shedding postchallenge on par with protection observed with current commercial vaccines without the associated safety concerns. Presented results indicate that the QAC adjuvant system can offer a safer alternative to the use of live vaccines against avian and other emerging coronaviruses.IMPORTANCE According to 2017 U.S. agriculture statistics, the combined value of production and sales from broilers, eggs, turkeys, and chicks was $42.8 billion. Of this number, broiler sales comprised 67% of the industry value, with the production of >50 billion pounds of chicken meat. The economic success of the poultry industry in the United States hinges on the extensive use of vaccines to control infectious bronchitis virus (IBV) and other poultry pathogens. The majority of vaccines currently licensed for poultry health include both modified live vaccine and inactivated pathogens. Despite their proven efficacy, modified live vaccine constructs take time to produce and could revert to virulence, which limits their safety. The significance of our research stems from the development of a safer and potent alternative mucosal vaccine to replace live vaccines against IBV and other emerging coronaviruses.


Assuntos
Bronquite/prevenção & controle , Infecções por Coronavirus/veterinária , Gammacoronavirus/imunologia , Mucosa/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Bronquite/virologia , Galinhas , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Modelos Animais de Doenças , Imunidade Celular , Imunização , Vírus da Bronquite Infecciosa/imunologia , Nucleocapsídeo/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Proteínas Recombinantes/imunologia , Vacinas de DNA/imunologia , Carga Viral
14.
Front Immunol ; 11: 559382, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33767689

RESUMO

Eliciting durable and protective T cell-mediated immunity in the respiratory mucosa remains a significant challenge. Polylactic-co-glycolic acid (PLGA)-based cationic pathogen-like particles (PLPs) loaded with TLR agonists mimic biophysical properties of microbes and hence, simulate pathogen-pattern recognition receptor interactions to safely and effectively stimulate innate immune responses. We generated micro particle PLPs loaded with TLR4 (glucopyranosyl lipid adjuvant, GLA) or TLR9 (CpG) agonists, and formulated them with and without a mucosal delivery enhancing carbomer-based nanoemulsion adjuvant (ADJ). These adjuvants delivered intranasally to mice elicited high numbers of influenza nucleoprotein (NP)-specific CD8+ and CD4+ effector and tissue-resident memory T cells (TRMs) in lungs and airways. PLPs delivering TLR4 versus TLR9 agonists drove phenotypically and functionally distinct populations of effector and memory T cells. While PLPs loaded with CpG or GLA provided immunity, combining the adjuvanticity of PLP-GLA and ADJ markedly enhanced the development of airway and lung TRMs and CD4 and CD8 T cell-dependent immunity to influenza virus. Further, balanced CD8 (Tc1/Tc17) and CD4 (Th1/Th17) recall responses were linked to effective influenza virus control. These studies provide mechanistic insights into vaccine-induced pulmonary T cell immunity and pave the way for the development of a universal influenza and SARS-CoV-2 vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Imunidade Celular/imunologia , Vírus da Influenza A/imunologia , Linfócitos Intraepiteliais/imunologia , Animais , Linhagem Celular , Cães , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Pulmão/imunologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/imunologia , Receptor 4 Toll-Like/imunologia
15.
Vaccine ; 37(35): 5051-5058, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31300285

RESUMO

Avian influenza virus (AIV) is an extraordinarily diverse pathogen that causes significant morbidity in domesticated poultry populations and threatens human life with looming pandemic potential. Controlling avian influenza in susceptible populations requires highly effective, economical and broadly reactive vaccines. Several AIV vaccines have proven insufficient despite their wide use, and better technologies are needed to improve their immunogenicity and broaden effectiveness. Previously, we developed a "mosaic" H5 subtype hemagglutinin (HA) AIV vaccine and demonstrated its broad protection against diverse highly pathogenic H5N1 and seasonal H1N1 virus strains in mouse and non-human primate models. There is a significant interest in developing effective and safe vaccines against AIV that cannot contribute to the emergence of new strains of the virus once circulating in poultry. Here, we report on the development of an H5 mosaic (H5M) vaccine antigen formulated with polyanhydride nanoparticles (PAN) that provide sustained release of encapsulated antigens. H5M vaccine constructs were immunogenic whether delivered by the modified virus Ankara (MVA) strain or encapsulated within PAN. Both humoral and cellular immune responses were generated in both specific-pathogen free (SPF) and commercial chicks. Importantly, chicks vaccinated by H5M constructs were protected in terms of viral shedding from divergent challenge with a low pathogenicity avian influenza (LPAI) strain at 8 weeks post-vaccination. In addition, protective levels of humoral immunity were generated against highly pathogenic avian influenza (HPAI) of the similar H5N1 and genetically dissimilar H5N2 viruses. Overall, the developed platform technologies (MVA vector and PAN encapsulation) were safe and provided high levels of sustained protection against AIV in chickens. Such approaches could be used to design more efficacious vaccines against other important poultry infections.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Nanopartículas/administração & dosagem , Vacinação/veterinária , Animais , Galinhas/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunidade Celular , Imunidade Humoral , Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N2 , Vacinas contra Influenza/administração & dosagem , Nanopartículas/química
16.
Sci Rep ; 9(1): 6788, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043669

RESUMO

White-nose syndrome (WNS) caused by the fungus, Pseudogymnoascus destructans (Pd) has killed millions of North American hibernating bats. Currently, methods to prevent the disease are limited. We conducted two trials to assess potential WNS vaccine candidates in wild-caught Myotis lucifugus. In a pilot study, we immunized bats with one of four vaccine treatments or phosphate-buffered saline (PBS) as a control and challenged them with Pd upon transfer into hibernation chambers. Bats in one vaccine-treated group, that received raccoon poxviruses (RCN) expressing Pd calnexin (CAL) and serine protease (SP), developed WNS at a lower rate (1/10) than other treatments combined (14/23), although samples sizes were small. The results of a second similar trial provided additional support for this observation. Bats vaccinated orally or by injection with RCN-CAL and RCN-SP survived Pd challenge at a significantly higher rate (P = 0.01) than controls. Using RT-PCR and flow cytometry, combined with fluorescent in situ hybridization, we determined that expression of IFN-γ transcripts and the number of CD4 + T-helper cells transcribing this gene were elevated (P < 0.10) in stimulated lymphocytes from surviving vaccinees (n = 15) compared to controls (n = 3). We conclude that vaccination with virally-vectored Pd antigens induced antifungal immunity that could potentially protect bats against WNS.


Assuntos
Ascomicetos/imunologia , Quirópteros/imunologia , Interações Hospedeiro-Patógeno , Imunização/veterinária , Micoses/prevenção & controle , Poxviridae/genética , Vacinas Virais/administração & dosagem , Animais , Ascomicetos/patogenicidade , Quirópteros/microbiologia , Quirópteros/virologia , Hibernação , Micoses/epidemiologia , Micoses/veterinária , Doenças Nasais/epidemiologia , Doenças Nasais/microbiologia , Projetos Piloto , Síndrome
17.
PLoS Negl Trop Dis ; 12(2): e0006210, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29401460

RESUMO

Mosquito-borne Zika virus (ZIKV) typically causes a mild and self-limiting illness known as Zika fever. Since its recent emergence in 2014 in the American continent, ZIKV infection during pregnancy has been closely associated with a wide range of congenital abnormalities. To date, no vaccines or antivirals are publicly available. We developed Zika virus-like particles (VLPs) and evaluated their immunogenicity and protective efficacy in mouse models. ZIKV VLPs (ZIKVLPs) formulated with alum were injected into 6-8-week-old interferon deficient AG129 mice as well as wild type BALB/c mice. Control mice received PBS/alum. Animals were challenged with 200 PFU (>1000 AG129 LD50s) of ZIKV strain H/PF/2013. All vaccinated mice survived with no morbidity or weight loss while control animals either died at 9 days post challenge (AG129) or had increased viremia (BALB/c). Neutralizing antibodies were observed in all ZIKVLP vaccinated mice. The role of neutralizing antibodies in protecting mice was demonstrated by passive transfer. Our findings demonstrate the protective efficacy of the ZIKVLP vaccine and highlight the important role that neutralizing antibodies play in protection against ZIKV infection.


Assuntos
Imunogenicidade da Vacina/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Modelos Animais de Doenças , Regulação Viral da Expressão Gênica , Células HEK293 , Humanos , Imunização Passiva , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Morbidade , Vacinação , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/genética , Viremia/virologia , Redução de Peso , Zika virus/efeitos dos fármacos , Zika virus/genética , Infecção por Zika virus/genética
18.
PLoS One ; 12(8): e0181738, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771513

RESUMO

The rapid antigenic evolution of influenza viruses requires frequent vaccine reformulations. Due to the economic burden of continuous vaccine reformulation and the threat of new pandemics, there is intense interest in developing vaccines capable of eliciting broadly cross-reactive immunity to influenza viruses. We recently constructed a "mosaic" hemagglutinin (HA) based on subtype 5 HA (H5) and designed to stimulate cellular and humoral immunity to multiple influenza virus subtypes. Modified vaccinia Ankara (MVA) expressing this H5 mosaic (MVA-H5M) protected mice against multiple homosubtypic H5N1 strains and a heterosubtypic H1N1 virus. To assess its potential as a human vaccine we evaluated the ability of MVA-H5M to provide heterosubtypic immunity to influenza viruses in a non-human primate model. Rhesus macaques received an initial dose of either MVA-H5M or plasmid DNA encoding H5M, followed by a boost of MVA-H5M, and then were challenged, together with naïve controls, with the heterosubtypic virus A/California/04/2009 (H1N1pdm). Macaques receiving either vaccine regimen cleared H1N1pdm challenge faster than naïve controls. Vaccination with H5M elicited antibodies that bound H1N1pdm HA, but did not neutralize the H1N1pdm challenge virus. Plasma from vaccinated macaques activated NK cells in the presence of H1N1pdm HA, suggesting that vaccination elicited cross-reactive antibodies capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC). Although HA-specific T cell responses to the MVA-H5M vaccine were weak, responses after challenge were stronger in vaccinated macaques than in control animals. Together these data suggest that mosaic HA antigens may provide a means for inducing broadly cross-reactive immunity to influenza viruses.


Assuntos
Vetores Genéticos/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vaccinia virus/genética , Vaccinia virus/imunologia , Eliminação de Partículas Virais/imunologia , Animais , Reações Cruzadas , Cães , Feminino , Expressão Gênica , Vírus da Influenza A Subtipo H1N1 , Macaca mulatta , Células Madin Darby de Rim Canino , Masculino , Linfócitos T/imunologia , Linfócitos T/virologia , Vacinação
19.
Vaccine ; 34(44): 5352-5358, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27650872

RESUMO

Bats (Order Chiroptera) are an abundant group of mammals with tremendous ecological value as insectivores and plant dispersers, but their role as reservoirs of zoonotic diseases has received more attention in the last decade. With the goal of managing disease in free-ranging bats, we tested modified vaccinia Ankara (MVA) and raccoon poxvirus (RCN) as potential vaccine vectors in the Brazilian Free-tailed bat (Tadarida brasiliensis), using biophotonic in vivo imaging and immunogenicity studies. Animals were administered recombinant poxviral vectors expressing the luciferase gene (MVA-luc, RCN-luc) through oronasal (ON) or intramuscular (IM) routes and subsequently monitored for bioluminescent signal indicative of viral infection. No clinical illness was noted after exposure to any of the vectors, and limited luciferase expression was observed. Higher and longer levels of expression were observed with the RCN-luc construct. When given IM, luciferase expression was limited to the site of injection, while ON exposure led to initial expression in the oral cavity, often followed by secondary replication at another location, likely the gastric mucosa or gastric associated lymphatic tissue. Viral DNA was detected in oral swabs up to 7 and 9 days post infection (dpi) for MVA and RCN, respectively. While no live virus was detected in oral swabs from MVA-infected bats, titers up to 3.88 x 104 PFU/ml were recovered from oral swabs of RCN-infected bats. Viral DNA was also detected in fecal samples from two bats inoculated IM with RCN, but no live virus was recovered. Finally, we examined the immunogenicity of a RCN based rabies vaccine (RCN-G) following ON administration. Significant rabies neutralizing antibody titers were detected in the serum of immunized bats using the rapid fluorescence focus inhibition test (RFFIT). These studies highlight the safety and immunogenicity of attenuated poxviruses and their potential use as vaccine vectors in bats.


Assuntos
Anticorpos Antivirais/sangue , Quirópteros/imunologia , Imunogenicidade da Vacina , Poxviridae/imunologia , Vacina Antirrábica/imunologia , Vírus da Raiva/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Quirópteros/virologia , Vetores Genéticos , Luciferases/genética , Medições Luminescentes , Masculino , Boca/virologia , Orthopoxvirus/genética , Orthopoxvirus/fisiologia , Poxviridae/isolamento & purificação , Poxviridae/fisiologia , Raiva/prevenção & controle , Raiva/veterinária , Vacina Antirrábica/administração & dosagem , Vacina Antirrábica/genética , Vacinação/métodos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/imunologia , Vaccinia virus/genética , Vaccinia virus/imunologia , Vaccinia virus/isolamento & purificação , Vaccinia virus/fisiologia , Replicação Viral
20.
J Virol ; 90(15): 6771-6783, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27194759

RESUMO

UNLABELLED: The most effective way to prevent influenza virus infection is via vaccination. However, the constant mutation of influenza viruses due to antigenic drift and shift compromises vaccine efficacy. This represents a major challenge to the development of a cross-protective vaccine that can protect against circulating viral antigenic diversity. Using the modified vaccinia Ankara (MVA) virus, we had previously generated a recombinant vaccine against highly pathogenic avian influenza virus (H5N1) based on an in silico mosaic approach. This MVA-H5M construct protected mice against multiple clades of H5N1 and H1N1 viruses. We have now further characterized the immune responses using immunodepletion of T cells and passive serum transfer, and these studies indicate that antibodies are the main contributors in homosubtypic protection (H5N1 clades). Compared to a MVA construct expressing hemagglutinin (HA) from influenza virus A/VN/1203/04 (MVA-HA), the MVA-H5M vaccine markedly increased and broadened B cell and T cell responses against H5N1 virus. The MVA-H5M also provided effective protection with no morbidity against H5N1 challenge, whereas MVA-HA-vaccinated mice showed clinical signs and experienced significant weight loss. In addition, MVA-H5M induced CD8(+) T cell responses that play a major role in heterosubtypic protection (H1N1). Finally, expression of the H5M gene as either a DNA vaccine or a subunit protein protected mice against H5N1 challenge, indicating the effectiveness of the mosaic sequence without viral vectors for the development of a universal influenza vaccine. IMPORTANCE: Influenza viruses infect up to one billion people around the globe each year and are responsible for 300,000 to 500,000 deaths annually. Vaccines are still the main intervention to prevent infection, but they fail to provide effective protection against heterologous strains of viruses. We developed broadly reactive H5N1 vaccine based on an in silico mosaic approach and previously demonstrated that modified vaccinia Ankara expressing an H5 mosaic hemagglutinin prevented infection with multiple clades of H5N1 and limited severe disease after H1N1 infection. Further characterization revealed that antibody responses and T cells are main contributors to protection against H5N1 and H1N1 viruses, respectively. The vaccine also broadens both T cell and B cell responses compared to native H5 vaccine from influenza virus A/Vietnam/1203/04. Finally, delivering the H5 mosaic as a DNA vaccine or as a purified protein demonstrated effective protection similar to the viral vector approach.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Imunidade Celular/imunologia , Vacinas contra Influenza/administração & dosagem , Infecções por Orthomyxoviridae/imunologia , Orthomyxoviridae/imunologia , Vaccinia virus/imunologia , Animais , Anticorpos Antivirais/sangue , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...