Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 80(5): 1514-1521, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28448144

RESUMO

Genome sequencing of microorganisms has revealed a greatly increased capacity for natural products biosynthesis than was previously recognized from compound isolation efforts alone. Hence, new methods are needed for the discovery and description of this hidden secondary metabolite potential. Here we show that provision of heavy nitrogen 15N-nitrate to marine cyanobacterial cultures followed by single-filament MALDI analysis over a period of days was highly effective in identifying a new natural product with an exceptionally high nitrogen content. The compound, named cryptomaldamide, was subsequently isolated using MS to guide the purification process, and its structure determined by 2D NMR and other spectroscopic and chromatographic methods. Bioinformatic analysis of the draft genome sequence identified a 28.7 kB gene cluster that putatively encodes for cryptomaldamide biosynthesis. Notably, an amidinotransferase is proposed to initiate the biosynthetic process by transferring an amidino group from arginine to serine to produce the first residue to be incorporated by the hybrid NRPS-PKS pathway. The maldiisotopic approach presented here is thus demonstrated to provide an orthogonal method by which to discover novel chemical diversity from Nature.


Assuntos
Produtos Biológicos/isolamento & purificação , Cianobactérias/química , Oligopeptídeos/biossíntese , Oligopeptídeos/isolamento & purificação , Produtos Biológicos/química , Biologia Computacional , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oligopeptídeos/química
2.
J Nat Prod ; 78(7): 1671-82, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26149623

RESUMO

An innovative approach was developed for the discovery of new natural products by combining mass spectrometric metabolic profiling with genomic analysis and resulted in the discovery of the columbamides, a new class of di- and trichlorinated acyl amides with cannabinomimetic activity. Three species of cultured marine cyanobacteria, Moorea producens 3L, Moorea producens JHB, and Moorea bouillonii PNG, were subjected to genome sequencing and analysis for their recognizable biosynthetic pathways, and this information was then compared with their respective metabolomes as detected by MS profiling. By genome analysis, a presumed regulatory domain was identified upstream of several previously described biosynthetic gene clusters in two of these cyanobacteria, M. producens 3L and M. producens JHB. A similar regulatory domain was identified in the M. bouillonii PNG genome, and a corresponding downstream biosynthetic gene cluster was located and carefully analyzed. Subsequently, MS-based molecular networking identified a series of candidate products, and these were isolated and their structures rigorously established. On the basis of their distinctive acyl amide structure, the most prevalent metabolite was evaluated for cannabinomimetic properties and found to be moderate affinity ligands for CB1.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Cianobactérias/química , Produtos Biológicos/farmacologia , Vias Biossintéticas/genética , Cianobactérias/genética , Genômica , Metaboloma , Metabolômica , Estrutura Molecular , Família Multigênica , Ressonância Magnética Nuclear Biomolecular , Receptor CB1 de Canabinoide/metabolismo
3.
J Org Chem ; 61(20): 7168-7173, 1996 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-11667621

RESUMO

Four cyclic peptides, kapakahines A-D, were isolated from the marine sponge Cribrochalina olemda. Their structures including complete stereochemistry were elucidated by spectral analysis and chemical degradation. The unique structural feature of these peptides is the lack of an amide linkage between two tryptophan residues. Instead the ring is closed by a bond from the indole nitrogen of Trp-1 to the beta-carbon of Trp-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA