Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(18): 5028-5041, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37540037

RESUMO

Manipulation of host phenotypes by parasites is hypothesized to be an adaptive strategy enhancing parasite transmission across hosts and generations. Characterizing the molecular mechanisms of manipulation is important to advance our understanding of host-parasite coevolution. The trematode (Levinseniella byrdi) is known to alter the colour and behaviour of its amphipod host (Orchestia grillus) presumably increasing predation of amphipods which enhances trematode transmission through its life cycle. We sampled 24 infected and 24 uninfected amphipods from a salt marsh in Massachusetts to perform differential gene expression analysis. In addition, we constructed novel genomic tools for O. grillus including a de novo genome and transcriptome. We discovered that trematode infection results in upregulation of amphipod transcripts associated with pigmentation and detection of external stimuli, and downregulation of multiple amphipod transcripts implicated in invertebrate immune responses, such as vacuolar ATPase genes. We hypothesize that suppression of immune genes and the altered expression of genes associated with coloration and behaviour may allow the trematode to persist in the amphipod and engage in further biochemical manipulation that promotes transmission. The genomic tools and transcriptomic analyses reported provide new opportunities to discover how parasites alter diverse pathways underlying host phenotypic changes in natural populations.


Assuntos
Anfípodes , Parasitos , Trematódeos , Animais , Anfípodes/genética , Interações Hospedeiro-Parasita/genética , Trematódeos/genética , Fenótipo
2.
Sci Rep ; 9(1): 14681, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604976

RESUMO

Nonnative, invasive feral pigs (Sus scrofa) modify habitats by disturbing soils and vegetation, which can alter biogeochemical processes. Soil microbial communities drive nutrient cycling and therefore also play important roles in shaping ecosystem structure and function, but the responses of soil microbes to nonnative ungulate removal remains poorly studied. We examined changes in the soil bacterial community over a ~25 year chronosequence of feral pig removal in tropical montane wet forests on the Island of Hawai'i. We extracted bacterial eDNA from soil samples collected inside and outside of ungulate exclosures along this chronosequence and sequenced the eDNA using the Illumina platform. We found that ungulate removal increased diversity of soil bacteria, with diversity scores positively correlated with time since removal. While functional and phylogenetic diversity were not significantly different between pig present and pig removed soils, soil bulk density, which decreases following the removal of feral pigs, was a useful predictor of dissimilarity among sites and correlated to changes in functional diversity. Additionally, increases in soil porosity, potassium, and calcium were correlated to increases in functional diversity. Finally, sites with greater mean annual temperatures were shown to have higher scores of both functional and phylogenetic diversity. As such, we conclude that feral pigs influence overall bacterial community diversity directly while influencing functional diversity indirectly through alterations to soil structure and nutrients. Comparatively, phylogenetic differences between communities are better explained by mean annual temperature as a climatic predictor of community dissimilarity.


Assuntos
Bactérias/genética , DNA Bacteriano/genética , Ecossistema , Microbiologia do Solo , Animais , Bactérias/classificação , Biodiversidade , Florestas , Havaí , Humanos , Espécies Introduzidas , Microbiota/genética , Filogenia , Suínos
3.
Nat Ecol Evol ; 1(12): 1798-1806, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29062123

RESUMO

Monitoring and evaluation are central to ensuring that innovative, multi-scale, and interdisciplinary approaches to sustainability are effective. The development of relevant indicators for local sustainable management outcomes, and the ability to link these to broader national and international policy targets, are key challenges for resource managers, policymakers, and scientists. Sets of indicators that capture both ecological and social-cultural factors, and the feedbacks between them, can underpin cross-scale linkages that help bridge local and global scale initiatives to increase resilience of both humans and ecosystems. Here we argue that biocultural approaches, in combination with methods for synthesizing across evidence from multiple sources, are critical to developing metrics that facilitate linkages across scales and dimensions. Biocultural approaches explicitly start with and build on local cultural perspectives - encompassing values, knowledges, and needs - and recognize feedbacks between ecosystems and human well-being. Adoption of these approaches can encourage exchange between local and global actors, and facilitate identification of crucial problems and solutions that are missing from many regional and international framings of sustainability. Resource managers, scientists, and policymakers need to be thoughtful about not only what kinds of indicators are measured, but also how indicators are designed, implemented, measured, and ultimately combined to evaluate resource use and well-being. We conclude by providing suggestions for translating between local and global indicator efforts.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Monitoramento Ambiental , Meio Social
4.
PLoS One ; 10(6): e0123995, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26066334

RESUMO

We used measurements from airborne imaging spectroscopy and LiDAR to quantify the biophysical structure and composition of vegetation on a dryland substrate age gradient in Hawaii. Both vertical stature and species composition changed during primary succession, and reveal a progressive increase in vertical stature on younger substrates followed by a collapse on Pleistocene-aged flows. Tall-stature Metrosideros polymorpha woodlands dominated on the youngest substrates (hundreds of years), and were replaced by the tall-stature endemic tree species Myoporum sandwicense and Sophora chrysophylla on intermediate-aged flows (thousands of years). The oldest substrates (tens of thousands of years) were dominated by the short-stature native shrub Dodonaea viscosa and endemic grass Eragrostis atropioides. We excavated 18 macroscopic charcoal fragments from Pleistocene-aged substrates. Mean radiocarbon age was 2,002 years and ranged from < 200 to 7,730. Genus identities from four fragments indicate that Osteomeles spp. or M. polymorpha once occupied the Pleistocene-aged substrates, but neither of these species is found there today. These findings indicate the existence of fires before humans are known to have occupied the Hawaiian archipelago, and demonstrate that a collapse in vertical stature is prevalent on the oldest substrates. This work contributes to our understanding of prehistoric fires in shaping the trajectory of primary succession in Hawaiian drylands.


Assuntos
Ecossistema , Havaí
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...