Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(8): 081302, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932619

RESUMO

I apply recently proposed "swampland" conjectures to eternal inflation in single-scalar field theories. Eternal inflation is a phase of infinite self-reproduction of a quasi-de Sitter universe which has been argued to be a generic consequence of cosmological inflation. The originally proposed de Sitter swampland conjectures were shown by Matsui and Takahashi, and by Dimopoulos, to be generically incompatible with eternal inflation. However, the more recently proposed "refined" swampland conjecture imposes a slightly weaker criterion on the scalar field potential in inflation, and is consistent with the existence of a tachyonic instability. In this Letter, I show that eternal inflation is marginally consistent with the refined de Sitter swampland conjecture. Thus, if the refined conjecture is correct, the existence of a landscape-based "multiverse" in string theory is not incompatible with a self-consistent ultraviolet completion, with significant consequences for model building in string theory.

2.
Respirology ; 21(5): 951-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27012592

RESUMO

BACKGROUND AND OBJECTIVE: With the worldwide emergence of highly drug-resistant tuberculosis (TB), novel agents that have direct antimycobacterial effects or that enhance host immunity are urgently needed. Curcumin is a polyphenol responsible for the bright yellow-orange colour of turmeric, a spice derived from the root of the perennial herb Curcuma longa. Curcumin is a potent inducer of apoptosis-an effector mechanism used by macrophages to kill intracellular Mycobacterium tuberculosis (MTB). METHODS: An in vitro human macrophage infection model was used to determine the effects of curcumin on MTB survival. RESULTS: We found that curcumin enhanced the clearance of MTB in differentiated THP-1 human monocytes and in primary human alveolar macrophages. We also found that curcumin was an inducer of caspase-3-dependent apoptosis and autophagy. Curcumin mediated these anti-MTB cellular functions, in part, via inhibition of nuclear factor-kappa B (NFκB) activation. CONCLUSION: Curcumin protects against MTB infection in human macrophages. The host-protective role of curcumin against MTB in macrophages needs confirmation in an animal model; if validated, the immunomodulatory anti-TB effects of curcumin would be less prone to drug resistance development.


Assuntos
Apoptose , Curcumina/farmacologia , Macrófagos Alveolares , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Humanos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Modelos Imunológicos , Mycobacterium tuberculosis/fisiologia , NF-kappa B/metabolismo , Substâncias Protetoras/farmacologia , Tuberculose/imunologia , Tuberculose/terapia
3.
BMC Microbiol ; 15: 39, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25887904

RESUMO

BACKGROUND: Macrophages are the primary effector cells responsible for killing Mycobacterium tuberculosis (MTB) through various mechanisms, including apoptosis. However, MTB can evade host immunity to create a favorable environment for intracellular replication. MTB-infected human macrophages produce interleukin-32 (IL-32). IL-32 is a pro-inflammatory cytokine and has several isoforms. We previously found that IL-32γ reduced the burden of MTB in human macrophages, in part, through the induction of caspase-3-dependent apoptosis. However, based on our previous studies, we hypothesized that caspase-3-independent death pathways may also mediate IL-32 control of MTB infection. Herein, we assessed the potential roles of cathepsin-mediated apoptosis, caspase-1-mediated pyroptosis, and apoptosis-inducing factor (AIF) in mediating IL-32γ control of MTB infection in THP-1 cells. RESULTS: Differentiated human THP-1 macrophages were infected with MTB H37Rv alone or in the presence of specific inhibitors to caspase-1, cathepsin B/D, or cathepsin L for up to four days, after which TUNEL-positive cells were quantified; in addition, MTB was quantified by culture as well as by the percentage of THP-1 cells that were infected with green fluorescent protein (GFP)-labeled MTB as determined by microscopy. AIF expression was inhibited using siRNA technology. Inhibition of cathepsin B/D, cathepsin L, or caspase-1 activity significantly abrogated the IL-32γ-mediated reduction in the number of intracellular MTB and of the percentage of GFP-MTB-infected macrophages. Furthermore, inhibition of caspase-1, cathepsin B/D, or cathepsin L in the absence of exogenous IL-32γ resulted in a trend toward an increased proportion of MTB-infected THP-1 cells. Inhibition of AIF activity in the absence of exogenous IL-32γ also increased intracellular burden of MTB. However, since IL-32γ did not induce AIF and because the relative increases in MTB with inhibition of AIF were similar in the presence or absence of IL-32γ, our results indicate that AIF does not mediate the host-protective effect of IL-32γ against MTB. CONCLUSIONS: The anti-MTB effects of IL-32γ are mediated through classical caspase-3-dependent apoptosis as well as caspase-3-independent apoptosis.


Assuntos
Apoptose , Interleucinas/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/imunologia , Carga Bacteriana , Linhagem Celular , Citoplasma/microbiologia , Humanos
4.
Proc Natl Acad Sci U S A ; 112(16): 5111-6, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25820174

RESUMO

Silencing of interleukin-32 (IL-32) in a differentiated human promonocytic cell line impairs killing of Mycobacterium tuberculosis (MTB) but the role of IL-32 in vivo against MTB remains unknown. To study the effects of IL-32 in vivo, a transgenic mouse was generated in which the human IL-32γ gene is expressed using the surfactant protein C promoter (SPC-IL-32γTg). Wild-type and SPC-IL-32γTg mice were infected with a low-dose aerosol of a hypervirulent strain of MTB (W-Beijing HN878). At 30 and 60 d after infection, the transgenic mice had 66% and 85% fewer MTB in the lungs and 49% and 68% fewer MTB in the spleens, respectively; the transgenic mice also exhibited greater survival. Increased numbers of host-protective innate and adaptive immune cells were present in SPC-IL-32γTg mice, including tumor necrosis factor-alpha (TNFα) positive lung macrophages and dendritic cells, and IFN-gamma (IFNγ) and TNFα positive CD4(+) and CD8(+) T cells in the lungs and mediastinal lymph nodes. Alveolar macrophages from transgenic mice infected with MTB ex vivo had reduced bacterial burden and increased colocalization of green fluorescent protein-labeled MTB with lysosomes. Furthermore, mouse macrophages made to express IL-32γ but not the splice variant IL-32ß were better able to limit MTB growth than macrophages capable of producing both. The lungs of patients with tuberculosis showed increased IL-32 expression, particularly in macrophages of granulomas and airway epithelial cells but also B cells and T cells. We conclude that IL-32γ enhances host immunity to MTB.


Assuntos
Interleucinas/metabolismo , Mycobacterium tuberculosis/patogenicidade , Tuberculose/imunologia , Tuberculose/prevenção & controle , Imunidade Adaptativa/imunologia , Animais , Antígenos Ly/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Humanos , Imunidade Inata/imunologia , Interferon gama , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Linfonodos/imunologia , Linfonodos/patologia , Macrófagos Alveolares/imunologia , Camundongos Transgênicos , Mutação/genética , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo , Sítios de Splice de RNA/genética , Linfócitos T Reguladores/imunologia , Transfecção , Transgenes , Tuberculose/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Virulência/imunologia
5.
Respirology ; 20(4): 556-68, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25808744

RESUMO

The geographic overlap between the prevalence of cigarette smoke (CS) exposure and tuberculosis (TB) in the world is striking. In recent years, relatively large number of studies has linked cigarette or biomass fuel smoke exposure and various aspects of TB. Our goals are to summarize the significance of the known published studies, graphically represent reports that quantified the association and discuss their potential limitations. PubMed searches were performed using the key words 'tuberculosis' with 'cigarette', 'tobacco', 'smoke' or 'biomass fuel smoke.' The references of relevant articles were examined for additional pertinent papers. A large number of mostly case-control and cross-sectional studies significantly associate both direct and second-hand smoke exposure with tuberculous infection, active TB, and/or more severe and lethal TB. Fewer link biomass fuel smoke exposure and TB. While a number of studies interpreted the association with multivariate analysis, other confounders are often not accounted for in these analyses. It is also important to emphasize that these retrospective studies can only show an association and not any causal link. We further explored the possibility that even if CS exposure is a risk factor for TB, several mechanisms may be responsible. Numerous studies associate cigarette and biomass smoke exposure with TB but the mechanism(s) remains largely unknown. While the associative link of these two health maladies is well established, more definitive, mechanistic studies are needed to cement the effect of smoke exposure on TB pathogenesis and to utilize this knowledge in empowering public health policies.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Tuberculose Latente/epidemiologia , Fumaça , Fumar/epidemiologia , Tuberculose Pulmonar/epidemiologia , Biomassa , Fontes Geradoras de Energia/estatística & dados numéricos , Humanos , Prevalência , Fatores de Risco , Produtos do Tabaco , Poluição por Fumaça de Tabaco/estatística & dados numéricos , Tuberculose/epidemiologia
6.
Tuberculosis (Edinb) ; 94(6): 544-50, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25305002

RESUMO

In many regions of the world, there is a great overlap between the prevalence of cigarette smoke exposure and tuberculosis. Despite the large body of epidemiologic evidence that tobacco smoke exposure is associated with increased tuberculosis infection, active disease, severity of disease, and mortality from tuberculosis, these studies cannot distinguish whether the mechanism is principally through direct impairment of anti-tuberculosis immunity by cigarette smoke or due to potential confounders that increase risk for tuberculosis and are commonly associated with smoking--such as poverty, malnutrition, and crowded living conditions. While there are several in vivo murine and in vitro macrophage studies showing cigarette smoke impairs control of tuberculous infection, little is known of the molecular and cellular mechanisms by which this impairment occurs. Herein, we highlight the key findings of these studies. Additionally, we review key immune cells that play critical roles in host-defense or pathogenesis of tuberculosis and generate a hypothesis-driven discussion of the possible mechanisms by which cigarette smoke impairs or enhances their functions, respectively, ultimately resulting in compromised immunity against tuberculosis.


Assuntos
Fumar/efeitos adversos , Tuberculose/etiologia , Imunidade Adaptativa , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Imunidade Inata , Camundongos , Fumar/epidemiologia , Tuberculose/epidemiologia , Tuberculose/imunologia
7.
FEMS Microbiol Lett ; 360(1): 17-22, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25155501

RESUMO

Nontuberculous mycobacteria (NTM) are ubiquitous organisms found in soil, water, and biofilms. Engineered surface topography has been proposed as a method to reduce microbial biofilm formation. The Sharklet(®) micropattern silicone surface has been shown to reduce biofilm formation of pyogenic bacteria. We hypothesized that this micropattern surface will also reduce colonization by Mycobacterium abscessus, a human pathogen. Smooth and micropattern silicone samples were incubated with 1 × 10(6) M. abscessus mL(-1) for 2 and 4 days. After processing to optimize recovery of adhered mycobacteria, there was a 75% and 50% reduction in the number of viable M. abscessus recovered from the micropattern surfaces compared to the smooth surfaces at 2 and 4 days after inoculation, respectively. Ziehl-Neelsen staining after measures to remove the adherent microorganisms revealed fewer residual M. abscessus on the micropattern samples as compared to smooth samples, validating the quantitative culture results. Microscopic observation of 2, 4, and 8 day M. abscessus cultures on micropattern samples showed that the organisms preferentially colonized within the channels between the rectangular features. In summary, a micropattern surface reduces the colonization of a pathogenic NTM. It remains to be seen whether this micropattern can reduce infections in humans.


Assuntos
Antibacterianos/química , Materiais Biomiméticos/química , Micobactérias não Tuberculosas/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Materiais Biomiméticos/farmacologia , Contagem de Colônia Microbiana , Propriedades de Superfície
8.
PLoS One ; 8(4): e61925, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23634218

RESUMO

Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy.


Assuntos
Macrófagos/metabolismo , Macrófagos/microbiologia , Viabilidade Microbiana/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/fisiologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Adenoviridae/genética , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Caspase 3/metabolismo , Inibidores de Caspase/farmacologia , Linhagem Celular , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Espaço Intracelular/microbiologia , Macrófagos/citologia , Macrófagos/imunologia , NF-kappa B/genética , Nitrilas/farmacologia , Sulfonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...