Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 7: 100791, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021826

RESUMO

Measuring total nitrogen, nitrate, and nitrite is critical for compliance with water safety standards. Previous methods for measuring total nitrogen were hazardous, time consuming, and expensive. Here we report a method for measuring total nitrogen in water and soil using alkaline persulfate digestion combined with a Nitrate Reductase assay. In this method the alkaline persulfate reaction oxidizes all nitrogen present in the sample to nitrate, Nitrate Reductase then is used to catalyze the reduction of nitrate to nitrite in the presence of NADH. The nitrite is then treated with Griess reagents to produce a pink color. The absorbance of this color is measured at 540 nm using a spectrophotometer and when compared to a standard curve of nitrate, treated with both the reduction and colorizing steps, can be used to determine the total nitrogen content of measured samples. This method customizes the measurement of total nitrogen by combining alkaline persulfate digestion with a Nitrate Reductase assay using enzyme based green chemistry. •Customization of total nitrogen analysis by combining alkaline persulfate digestion, driving all nitrogen to nitrate, with a colorimetric nitrate reductase assay•Nitrate reductase catalyzes all nitrate, produced by alkaline persulfate digestion and present in the original sample, to nitrite•Nitrite is measured by the addition of sulfanilamide and N-(1-napthyl)ethylenediamine dihydrochloride, resulting in a pink color.

2.
Biosens Bioelectron ; 117: 501-507, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29982120

RESUMO

Despite the availability of numerous electroanalytical methods for phosphate quantification, practical implementation in point-of-use sensing remains virtually nonexistent because of interferences from sample matrices or from atmospheric O2. In this work, phosphate determination is achieved by the purine nucleoside phosphorylase (PNP) catalyzed reaction of inosine and phosphate to produce hypoxanthine which is subsequently oxidized by xanthine oxidase (XOx), first to xanthine and then to uric acid. Both PNP and XOx are integrated in a redox active Os-complex modified polymer, which not only acts as supporting matrix for the bienzymatic system but also shuttles electrons from the hypoxanthine oxidation reaction to the electrode. The bienzymatic cascade in this second generation phosphate biosensor selectively delivers four electrons for each phosphate molecule present. We introduced an additional electrochemical process involving uric acid oxidation at the underlying electrode. This further enhances the anodic current (signal amplification) by two additional electrons per analyte molecule which mitigates the influence of electrochemical interferences from the sample matrix. Moreover, while the XOx catalyzed reaction is sensitive to O2, the uric acid production and therefore the delivery of electrons through the subsequent electrochemical process are independent of the presence of O2. Consequently, the electrochemical process counterbalances the O2 interferences, especially at low phosphate concentrations. Importantly, the electrochemical uric acid oxidation specifically reports on phosphate concentration since it originates from the product of the bienzymatic reactions. These advantageous properties make this bioelectrochemical-electrochemical cascade particularly promising for point-of-use phosphate measurements.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas , Fosfatos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...