Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz J Med Biol Res ; 27(2): 127-32, 1994 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8081220

RESUMO

Cloning genes for glycosylphosphatidylinositol (GPI)-anchor biosynthesis is important to further understand its mechanisms and regulation. We have been using expression cloning methods in which a cDNA library was transfected into GPI-anchor-deficient mutant cells. The transfectants which restored surface expression of GPI-anchored proteins were isolated and the plasmids were rescued. In this way we previously cloned cDNAs of genes for complementation classes A and F, and named them PIG-A and PIG-F, respectively. In the present study we have cloned the gene for class B, termed PIG-B. In each case we used different methods. For cloning PIG-A cDNA we used a cDNA library made with an Epstein-Barr-virus-based vector and human class A mutant JY5 which expresses EBNA-1 protein. The EBNA-1 protein allows stable replication of oriP-containing plasmids in the episomal form. For cloning PIG-F cDNA we chose a transient expression method and cotransfected a human T-cell cDNA library made with a vector bearing an origin of replication of polyoma virus with a plasmid bearing polyoma virus large T into the class F murine thymoma mutant. This cotransfection strategy was unsuccessful for cloning PIG-B due to low transfection efficiency of the class B thymoma mutant SIA-b. Thus, we first established large T-expressing SIA-b cells and then transfected them with a cDNA library. PIG-B cDNA restored the surface expression of Thy-1 on SIA-b cells and also synthesis of mature type GPI-anchor precursors in these cells.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Clonagem Molecular/métodos , Regulação da Expressão Gênica/genética , Glicosilfosfatidilinositóis/biossíntese , Animais , Células Cultivadas , DNA Complementar/genética , Biblioteca Gênica , Vetores Genéticos , Glicosilfosfatidilinositóis/deficiência , Glicosilfosfatidilinositóis/genética , Hemoglobinúria Paroxística/genética , Hemoglobinúria Paroxística/metabolismo , Herpesvirus Humano 4/genética , Humanos , Mutação/genética , Transfecção
2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;27(2): 127-32, Feb. 1994. ilus
Artigo em Inglês | LILACS | ID: lil-138275

RESUMO

Cloning genes for glycosylphosphatydilinositol (GPI)-anchor biosynthesis is important to further understand its mechanisms and regulation. We have been using expression cloning methods in which a cDNA library was transfected into GPI-anchor-deficient mutant cells. The transfectants which restored surface expression of GPI-anchored proteins were isolated and the plasmids were rescued. In this way we previously cloned cDNAs of genes for complementation classes A and F, and named them PIG-A and PIG-F, respectively. In the present study we have cloned the gene for class B, termed PIG-B. In each case we used different methods. For cloning PIG-A cDNA we used a cDNA library made with an Epstein-Barr-virus-based vector and human class A mutant JY5 which expresses EBNA-1 protein. The EBNA-1 protein allows stable replication of oriP-containing plasmids in the episomal form. For cloning PIG-F cDNA we chose a transient expression method and cotransfected a human T-cell cDNA library made with a vector bearing an origin of replication of polyoma virus with a plasmid bearing polyoma virus large T into the class F murine thymona mutant. This cotransfection strategy was unsuccessful for cloning PIG-B due to low transfection efficiency of the class B thymoma mutant SIA-b. Thus, we first established large T-expressing SIA-b cells and then transfected them with cDNA library. PIG-B cDNA restored the surface expression of Thy-1 on SIA-b cells and also synthesis of mature type GPI-anchor precursors in these cells. The cDNA consists of 1929 bp and codes for a putative new protein of 554 amino acid residues


Assuntos
Humanos , Replicação do DNA , Fosfatidilinositóis/genética , Glicolipídeos/genética , Replicação Viral , Sequência de Aminoácidos , Clonagem Molecular , DNA/biossíntese , Fosfatidilinositóis/biossíntese , Biblioteca Gênica , Glicolipídeos/biossíntese , Hemoglobinúria Paroxística/genética , Herpesvirus Humano 4/fisiologia , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA