Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Minds Mach (Dordr) ; 31(2): 239-256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720418

RESUMO

As the range of potential uses for Artificial Intelligence (AI), in particular machine learning (ML), has increased, so has awareness of the associated ethical issues. This increased awareness has led to the realisation that existing legislation and regulation provides insufficient protection to individuals, groups, society, and the environment from AI harms. In response to this realisation, there has been a proliferation of principle-based ethics codes, guidelines and frameworks. However, it has become increasingly clear that a significant gap exists between the theory of AI ethics principles and the practical design of AI systems. In previous work, we analysed whether it is possible to close this gap between the 'what' and the 'how' of AI ethics through the use of tools and methods designed to help AI developers, engineers, and designers translate principles into practice. We concluded that this method of closure is currently ineffective as almost all existing translational tools and methods are either too flexible (and thus vulnerable to ethics washing) or too strict (unresponsive to context). This raised the question: if, even with technical guidance, AI ethics is challenging to embed in the process of algorithmic design, is the entire pro-ethical design endeavour rendered futile? And, if no, then how can AI ethics be made useful for AI practitioners? This is the question we seek to address here by exploring why principles and technical translational tools are still needed even if they are limited, and how these limitations can be potentially overcome by providing theoretical grounding of a concept that has been termed 'Ethics as a Service.'

2.
Sci Eng Ethics ; 26(4): 2141-2168, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31828533

RESUMO

The debate about the ethical implications of Artificial Intelligence dates from the 1960s (Samuel in Science, 132(3429):741-742, 1960. https://doi.org/10.1126/science.132.3429.741 ; Wiener in Cybernetics: or control and communication in the animal and the machine, MIT Press, New York, 1961). However, in recent years symbolic AI has been complemented and sometimes replaced by (Deep) Neural Networks and Machine Learning (ML) techniques. This has vastly increased its potential utility and impact on society, with the consequence that the ethical debate has gone mainstream. Such a debate has primarily focused on principles-the 'what' of AI ethics (beneficence, non-maleficence, autonomy, justice and explicability)-rather than on practices, the 'how.' Awareness of the potential issues is increasing at a fast rate, but the AI community's ability to take action to mitigate the associated risks is still at its infancy. Our intention in presenting this research is to contribute to closing the gap between principles and practices by constructing a typology that may help practically-minded developers apply ethics at each stage of the Machine Learning development pipeline, and to signal to researchers where further work is needed. The focus is exclusively on Machine Learning, but it is hoped that the results of this research may be easily applicable to other branches of AI. The article outlines the research method for creating this typology, the initial findings, and provides a summary of future research needs.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Animais , Beneficência , Humanos , Pesquisadores , Justiça Social
3.
PLoS Comput Biol ; 14(3): e1005995, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29518076

RESUMO

Passive acoustic sensing has emerged as a powerful tool for quantifying anthropogenic impacts on biodiversity, especially for echolocating bat species. To better assess bat population trends there is a critical need for accurate, reliable, and open source tools that allow the detection and classification of bat calls in large collections of audio recordings. The majority of existing tools are commercial or have focused on the species classification task, neglecting the important problem of first localizing echolocation calls in audio which is particularly problematic in noisy recordings. We developed a convolutional neural network based open-source pipeline for detecting ultrasonic, full-spectrum, search-phase calls produced by echolocating bats. Our deep learning algorithms were trained on full-spectrum ultrasonic audio collected along road-transects across Europe and labelled by citizen scientists from www.batdetective.org. When compared to other existing algorithms and commercial systems, we show significantly higher detection performance of search-phase echolocation calls with our test sets. As an example application, we ran our detection pipeline on bat monitoring data collected over five years from Jersey (UK), and compared results to a widely-used commercial system. Our detection pipeline can be used for the automatic detection and monitoring of bat populations, and further facilitates their use as indicator species on a large scale. Our proposed pipeline makes only a small number of bat specific design decisions, and with appropriate training data it could be applied to detecting other species in audio. A crucial novelty of our work is showing that with careful, non-trivial, design and implementation considerations, state-of-the-art deep learning methods can be used for accurate and efficient monitoring in audio.


Assuntos
Quirópteros/fisiologia , Ecolocação/fisiologia , Monitoramento Ambiental/métodos , Aprendizado de Máquina , Processamento de Sinais Assistido por Computador , Algoritmos , Animais , Quirópteros/classificação , Biologia Computacional , Ecolocação/classificação , Espécies em Perigo de Extinção , Redes Neurais de Computação , Zoologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA