Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1349013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283282

RESUMO

Quantum biology studies span multiple disciplines including physics, engineering, and biology with the goal of understanding the quantum underpinnings of living systems. Recent findings have brought wide attention to the role of quantum mechanisms in the function and regulation of biological processes. Moreover, a number of activities have been integral in building a vibrant quantum biology community. Due to the inherent interdisciplinary nature of the field, it is a challenge for quantum biology researchers to integrate and advance findings across the physical and biological disciplines. Here we outline achievable approaches to developing a shared platform-including the establishment of standardized manipulation tools and sensors, and a common scientific lexicon. Building a shared community framework is also crucial for fostering robust interdisciplinary collaborations, enhancing knowledge sharing, and diversifying participation in quantum biology. A unified approach promises not only to deepen our understanding of biological systems at a quantum level but also to accelerate the frontiers of medical and technological innovations.

2.
Int J Mol Sci ; 22(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34681819

RESUMO

Non-ionizing radiation is commonly used in the clinical setting, despite its known ability to trigger oxidative stress and apoptosis, which can lead to damage and cell death. Although induction of cell death is typically considered harmful, apoptosis can also be beneficial in the right context. For example, cell death can serve as the signal for new tissue growth, such as in apoptosis-induced proliferation. Recent data has shown that exposure to non-ionizing radiation (such as weak static magnetic fields, weak radiofrequency magnetic fields, and weak electromagnetic fields) is able to modulate proliferation, both in cell culture and in living organisms (for example during tissue regeneration). This occurs via in vivo changes in the levels of reactive oxygen species (ROS), which are canonical activators of apoptosis. This review will describe the literature that highlights the tantalizing possibility that non-ionizing radiation could be used to manipulate apoptosis-induced proliferation to either promote growth (for regenerative medicine) or inhibit it (for cancer therapies). However, as uncontrolled growth can lead to tumorigenesis, much more research into this exciting and developing area is needed in order to realize its promise.


Assuntos
Apoptose/efeitos da radiação , Proliferação de Células/efeitos da radiação , Radiação não Ionizante , Espécies Reativas de Oxigênio/efeitos da radiação , Animais , Protocolos Antineoplásicos , Humanos , Medicina Regenerativa
3.
Sci Adv ; 5(1): eaau7201, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30729158

RESUMO

Biological systems are constantly exposed to electromagnetic fields (EMFs) in the form of natural geomagnetic fields and EMFs emitted from technology. While strong magnetic fields are known to change chemical reaction rates and free radical concentrations, the debate remains about whether static weak magnetic fields (WMFs; <1 mT) also produce biological effects. Using the planarian regeneration model, we show that WMFs altered stem cell proliferation and subsequent differentiation via changes in reactive oxygen species (ROS) accumulation and downstream heat shock protein 70 (Hsp70) expression. These data reveal that on the basis of field strength, WMF exposure can increase or decrease new tissue formation in vivo, suggesting WMFs as a potential therapeutic tool to manipulate mitotic activity.


Assuntos
Proliferação de Células , Campos Eletromagnéticos , Planárias/fisiologia , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Radicais Livres/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Mitose/fisiologia , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...