Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 253: 54-58, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28482282

RESUMO

Vibrio vulnificus (Vv) and V. parahaemolyticus (Vp) illnesses are typically acquired through the consumption of raw molluscan shellfish, particularly oysters. As Vibrio spp. are naturally-occurring bacteria, one means of mitigation of illness is achieved by limiting post-harvest growth. In this study, effects of ambient air storage, refrigeration, and icing of oysters on Vibrio spp. abundances were examined at two sites in Alabama (AL) [Dog River (DR) and Cedar Point (CP)] and one site in Delaware Bay, New Jersey (NJ). As the United States shellfish program recommendations include testing for total these organisms and gene targets, Vv and total (tlh) and pathogenic (tdh+ and trh+) Vp were enumerated from samples using MPN-real-time-PCR approaches. Mean Vv and Vp abundances in oysters from AL-DR were lowest in immediately iced samples (2.3 and -0.1 log MPN/g, respectively) and highest in the 5h ambient then refrigerated samples (3.4 and 0.5 log MPN/g, respectively). Similarly, in AL-CP Vv and Vp mean levels in oysters were lowest in immediately iced samples (3.6 and 1.2 log MPN/g, respectively) and highest in 5h ambient then refrigerated samples (5.1 and 3.2 log MPN/g, respectively). Mean levels of pathogenic Vp from AL sites were frequently below the limit of detection (<0.3 MPN/g). In NJ, Vv and Vp mean abundances in oysters were highest in samples which were held for 7h in the shade (5.3 and 4.8 log MPN/g, respectively). Mean pathogenic Vp levels in oysters at initial harvest were also highest in oysters 7h in the shade (2.1 and 2.2 log MPN/g for tdh+ and trh+ Vp). Regardless of sampling location, Vibrio spp. levels were generally significantly (p<0.05) greater in oysters exposed to 5h of air storage compared to the initially harvested samples. In addition, the data demonstrated that the use of layered ice resulted in lower Vibrio spp. levels in oysters, compared to those that were refrigerated post-harvest. These results suggest vibriosis risk can be mitigated by shorter storage times and more rapid cooling of oysters, providing data regulatory authorities can use to evaluate Vibrio spp. control plans.


Assuntos
Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Doenças Transmitidas por Alimentos/prevenção & controle , Ostreidae/microbiologia , Frutos do Mar/microbiologia , Vibrioses/prevenção & controle , Vibrio parahaemolyticus/crescimento & desenvolvimento , Vibrio vulnificus/crescimento & desenvolvimento , Animais , Temperatura Baixa , Contagem de Colônia Microbiana , Cães , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Refrigeração , Estados Unidos , Vibrioses/microbiologia , Vibrio parahaemolyticus/genética , Vibrio vulnificus/genética
2.
Appl Environ Microbiol ; 82(15): 4517-4522, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27208133

RESUMO

UNLABELLED: Vibrio parahaemolyticus and Vibrio vulnificus can grow rapidly in shellfish subjected to ambient air conditions, such as during intertidal exposure. In this study, levels of total and pathogenic (tdh(+) and/or trh(+)) V. parahaemolyticus and total V. vulnificus were determined in oysters collected from two study locations where intertidal harvest practices are common. Samples were collected directly off intertidal flats, after exposure (ambient air [Washington State] or refrigerated [New Jersey]), and after reimmersion by natural tidal cycles. Samples were processed using a most-probable-number (MPN) real-time PCR method for total and pathogenic V. parahaemolyticus or V. vulnificus In Washington State, the mean levels of V. parahaemolyticus increased 1.38 log MPN/g following intertidal exposure and dropped 1.41 log MPN/g after reimmersion for 1 day, but the levels were dependent upon the container type utilized. Pathogenic V. parahaemolyticus levels followed a similar trend. However, V. vulnificus levels increased 0.10 log MPN/g during intertidal exposure in Washington but decreased by >1 log MPN/g after reimmersion. In New Jersey, initial levels of all vibrios studied were not significantly altered during the refrigerated sorting and containerizing process. However, there was an increase in levels after the first day of reimmersion by 0.79, 0.72, 0.92, and 0.71 log MPN/g for total, tdh(+) and trh(+) V. parahaemolyticus, and V. vulnificus, respectively. The levels of all targets decreased to those similar to background after a second day of reimmersion. These data indicate that the intertidal harvest and handling practices for oysters that were studied in Washington and New Jersey do not increase the risk of illness from V. parahaemolyticus or V. vulnificus IMPORTANCE: Vibrio parahaemolyticus and Vibrio vulnificus are the leading causes of seafood-associated infectious morbidity and mortality in the United States. Vibrio spp. can grow rapidly in shellfish subjected to ambient air conditions, such as during periods of intertidal exposure. When oysters are submersed with the incoming tide, the vibrios can be purged. However, data on the rates of increase and purging during intertidal harvest are scarce, which limits the accuracy of risk assessments. The objective of this study was to help fill these data gaps by determining the levels of total and pathogenic (tdh(+) and/or trh(+)) V. parahaemolyticus and V. vulnificus in oysters from two locations where intertidal harvest practices are common, using the current industry practices. The data generated provide insight into the responses of Vibrio spp. to relevant practices of the industry and public health, which can be incorporated into risk management decisions.


Assuntos
Ostreidae/microbiologia , Frutos do Mar/microbiologia , Vibrio parahaemolyticus/isolamento & purificação , Vibrio vulnificus/isolamento & purificação , Animais , Contaminação de Alimentos/análise , Manipulação de Alimentos , Vibrio parahaemolyticus/classificação , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/crescimento & desenvolvimento , Vibrio vulnificus/classificação , Vibrio vulnificus/genética , Vibrio vulnificus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA