Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Syndromol ; 13(6): 537-542, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36660029

RESUMO

Introduction: 3M syndrome is an autosomal recessive disorder characterized by characteristic facial features, severe pre- and postnatal growth restriction (<-4 SDS), and normal mental development. 3M syndrome is genetically heterogeneous. Up to date, causative mutations have been demonstrated in 3 genes, cullin-7 (CUL7), obscurin-like 1 (OBSL1), and coiled coil domain containing protein 8 (CCDC8). Case presentation: Here, we report a patient who was referred to our clinic due to short stature and developmental delay. Physical examination revealed prenatal onset short stature, low birth weight, and normal head circumference. She displayed several dysmorphic facial features in addition to developmental delay and bilateral sensorineural hearing loss. The physical findings were suggestive of 3M syndrome. Genetic assessment revealed a novel homozygous frameshift c.418_419delAC (p.Thr140Cysfs*11) variant in the CUL7 gene and a previously reported pathogenic nonsense homozygous c.942C>A (p.Cys314Ter) variant in the ILDR1 gene. The parents were heterozygous for the same variant. Discussion: 3M syndrome should be considered in the differential diagnosis of patients with short stature and typical facial features even if in the presence of other inconsistent features such as developmental delay. In addition, it is important to take into account the co-occurrence of rare autosomal recessive genetic disorders especially in countries with a high consanguineous marriage rate.

3.
Am J Hum Genet ; 108(7): 1301-1317, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34038740

RESUMO

Human C2orf69 is an evolutionarily conserved gene whose function is unknown. Here, we report eight unrelated families from which 20 children presented with a fatal syndrome consisting of severe autoinflammation and progredient leukoencephalopathy with recurrent seizures; 12 of these subjects, whose DNA was available, segregated homozygous loss-of-function C2orf69 variants. C2ORF69 bears homology to esterase enzymes, and orthologs can be found in most eukaryotic genomes, including that of unicellular phytoplankton. We found that endogenous C2ORF69 (1) is loosely bound to mitochondria, (2) affects mitochondrial membrane potential and oxidative respiration in cultured neurons, and (3) controls the levels of the glycogen branching enzyme 1 (GBE1) consistent with a glycogen-storage-associated mitochondriopathy. We show that CRISPR-Cas9-mediated inactivation of zebrafish C2orf69 results in lethality by 8 months of age due to spontaneous epileptic seizures, which is preceded by persistent brain inflammation. Collectively, our results delineate an autoinflammatory Mendelian disorder of C2orf69 deficiency that disrupts the development/homeostasis of the immune and central nervous systems.


Assuntos
Encefalite/genética , Doenças Mitocondriais/genética , Animais , Evolução Biológica , Sistemas CRISPR-Cas , Linhagem Celular , Encefalite/mortalidade , Feminino , Genes Recessivos , Glicogênio/metabolismo , Humanos , Inflamação/genética , Masculino , Proteínas de Membrana/genética , Doenças Mitocondriais/mortalidade , Linhagem , Convulsões/genética , Convulsões/mortalidade , Peixe-Zebra/genética
4.
Hum Mutat ; 42(6): 711-730, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33739556

RESUMO

Brittle cornea syndrome (BCS) is a rare autosomal recessive disorder characterized by corneal thinning and fragility, leading to corneal rupture, the main hallmark of this disorder. Non-ocular symptoms include not only hearing loss but also signs of connective tissue fragility, placing it in the Ehlers-Danlos syndrome (EDS) spectrum. It is caused by biallelic pathogenic variants in ZNF469 or PRDM5, which presumably encode transcription factors for extracellular matrix components. We report the clinical and molecular features of nine novel BCS families, four of which harbor variants in ZNF469 and five in PRDM5. We also performed a genotype- and phenotype-oriented literature overview of all (n = 85) reported patients with ZNF469 (n = 53) and PRDM5 (n = 32) variants. Musculoskeletal findings may be the main reason for referral and often raise suspicion of another heritable connective tissue disorder, such as kyphoscoliotic EDS, osteogenesis imperfecta, or Marfan syndrome, especially when a corneal rupture has not yet occurred. Our findings highlight the multisystemic nature of BCS and validate its inclusion in the EDS classification. Importantly, gene panels for heritable connective tissue disorders should include ZNF469 and PRDM5 to allow for timely diagnosis and appropriate preventive measures for this rare condition.


Assuntos
Proteínas de Ligação a DNA/genética , Anormalidades do Olho/genética , Instabilidade Articular/congênito , Anormalidades da Pele/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Anormalidades do Olho/epidemiologia , Anormalidades do Olho/patologia , Família , Feminino , Estudos de Associação Genética , Humanos , Lactente , Instabilidade Articular/epidemiologia , Instabilidade Articular/genética , Instabilidade Articular/patologia , Masculino , Mutação , Linhagem , Anormalidades da Pele/epidemiologia , Anormalidades da Pele/patologia , Sequenciamento do Exoma , Adulto Jovem
5.
J Hum Genet ; 66(6): 607-611, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33402699

RESUMO

Dysosteosclerosis (DOS) is a rare sclerosing bone dysplasia characterized by osteosclerosis and platyspondyly. DOS is genetically heterogeneous and causally associated with mutations in three genes, SLC29A3, CSF1R, and TNFRSF11A. TNFRSF11A has been known as the causal gene for osteopetrosis, autosomal recessive 7, and is recently reported to cause DOS in three cases, which show a complex genotype-phenotype relationship. The phenotypic spectrum of TNFRSF11A-associated sclerosing bone dysplasia remains unclear and needs to be characterized further in more cases with molecular genetic diagnosis. Here, we report another TNFRSF11A-associated DOS case with a homozygous missense mutation (p.R129C). The mutation effect is different from the previous three cases, in which truncated or elongated RANK proteins were generated in isoform specific manner, thus enriching our understanding of the genotype-phenotype association in TNFRSF11A-associated sclerosing bone dysplasia. Besides DOS, our case presented with intracranial extramedullary hematopoiesis, which is an extremely rare condition and has not been identified in any other sclerosing bone dysplasias with molecular genetic diagnosis. Our findings provide the fourth case of TNFRSF11A-associated DOS and further expand its phenotypic spectrum.


Assuntos
Hematopoese/genética , Osteosclerose/genética , Receptor Ativador de Fator Nuclear kappa-B/genética , Doenças Ósseas , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Heterogeneidade Genética , Homozigoto , Humanos , Lactente , Deficiência Intelectual , Mutação/genética , Proteínas de Transporte de Nucleosídeos/genética , Osteopetrose/genética , Osteopetrose/patologia , Osteosclerose/diagnóstico , Osteosclerose/patologia , Fenótipo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Esclerose
6.
Mol Syndromol ; 11(5-6): 296-301, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33510600

RESUMO

Mowat-Wilson syndrome (MWS) is a rare autosomal dominant syndrome characterized by distinctive facial features, congenital heart defects, Hirschsprung disease, genitourinary anomalies, various structural brain anomalies, and intellectual disability. Pathogenic mutations that result in haploinsufficiency in the ZEB2 gene cause MWS. In this study, we aimed to evaluate the clinical features and molecular analysis results of 4 MWS patients. All patients were examined by an expert clinical geneticist. Dysmorphological abnormalities were recorded. Data including demographic, clinical, and laboratory findings were obtained from hospital records. ZEB2 gene analysis was performed using a Sanger sequencing method. All patients had typical facial features of MWS such as widely spaced eyes, broad eyebrows with a medial flare, low-hanging columella, prominent or pointed chin, open-mouth expression, and uplifted earlobes. Four different heterozygous mutations were identified; 2 mutations were frameshift (c.246_247delGGinsC, c.980_980delG), 1 was nonsense (c.2083C>T), and 1 was splice site (c.808-2A>G). Two of them (c.246_247delGGinsC, c.980_980delG) have not been previously reported in the literature. By defining 2 novel mutations, this study contributes to the molecular spectrum of MWS, while also providing a further insight for genetic counseling. It also demonstrates the importance of dysmorphological examination in clinical diagnosis.

7.
Mol Syndromol ; 11(5-6): 302-308, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33510601

RESUMO

Congenital cataract, which refers to lenticular opacity diagnosed at birth or more commonly during the first year of life, is one of the leading causes of childhood blindness. Molecular understanding of the disease pathogenesis has evolved thanks to many studies based on modern technologies. In this study, we aimed to identify and discuss the molecular etiology of nonsyndromic or nonmetabolic bilateral congenital cataract by whole-exome sequencing (WES). Patients with bilateral congenital cataract presumed to be isolated after metabolic and genetic evaluation were enrolled in the study. All patients underwent detailed ophthalmological examination and bilateral cataract surgery. DNA samples of the probands, parents, and available affected family members were analyzed by WES. Variants were validated and confirmed by Sanger sequencing in all probands and in available affected family members. A total of 4 patients (3 girls and 1 boy) were recruited. Two patients had nuclear, 1 patient had total, and 1 patient had combined lamellar and sutural cataract. One family had consanguinity. A heterozygous c.215+1G>A mutation in CRYBA1, heterozygous c.432C>G (p.Tyr144Ter) mutation in CRYGC, heterozygous c.70A>C (p.Pro24Thr) mutation in CRYGD, and a heterozygous c.466G>A (p.Gly156Arg) mutation in CRYBB3 were detected. All these mutations were confirmed by Sanger sequencing in selected affected individuals. The current study identified all causative mutations of congenital cataract in the crystalline genes. The results confirmed that WES is a very useful tool in the investigation of the diseases with heterogeneous genetic background.

8.
Am J Med Genet A ; 179(12): 2474-2480, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31584751

RESUMO

Noonan syndrome-like disorder with loose anagen hair (NS/LAH) is one of the RASopathies, a group of clinically related developmental disorders caused by germline mutations in genes that encode components acting in the RAS/MAPK pathway. Among RASopathies, NS/LAH (OMIM 607721) is an extremely rare, multiple anomaly syndrome characterized by dysmorphic facial features similar to those observed in Noonan syndrome along with some distinctive ectodermal findings including easily pluckable, sparse, thin, and slow-growing hair. ADA2 deficiency (DADA2, OMIM 615688) is a monogenic autoinflammatory disorder caused by homozygous or compound heterozygous mutations in ADA2, with clinical features including recurrent fever, livedo racemosa, hepatosplenomegaly, and strokes as well as immune dysregulation. This is the first report of NS/LAH and ADA2 deficiency in the same individual. We report on a patient presenting with facial features, recurrent infections and ectodermal findings in whom both the clinical and molecular diagnoses of NS/LAH and ADA2 deficiency were established, respectively.


Assuntos
Adenosina Desaminase/deficiência , Agamaglobulinemia/diagnóstico , Agamaglobulinemia/genética , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Síndrome dos Cabelos Anágenos Frouxos/diagnóstico , Síndrome dos Cabelos Anágenos Frouxos/genética , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Fenótipo , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Adenosina Desaminase/genética , Alelos , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Genótipo , Humanos , Mutação , Radiografia , Avaliação de Sintomas
9.
Am J Hum Genet ; 104(5): 925-935, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982609

RESUMO

Colony stimulating factor 1 receptor (CSF1R) plays key roles in regulating development and function of the monocyte/macrophage lineage, including microglia and osteoclasts. Mono-allelic mutations of CSF1R are known to cause hereditary diffuse leukoencephalopathy with spheroids (HDLS), an adult-onset progressive neurodegenerative disorder. Here, we report seven affected individuals from three unrelated families who had bi-allelic CSF1R mutations. In addition to early-onset HDLS-like neurological disorders, they had brain malformations and skeletal dysplasia compatible to dysosteosclerosis (DOS) or Pyle disease. We identified five CSF1R mutations that were homozygous or compound heterozygous in these affected individuals. Two of them were deep intronic mutations resulting in abnormal inclusion of intron sequences in the mRNA. Compared with Csf1r-null mice, the skeletal and neural phenotypes of the affected individuals appeared milder and variable, suggesting that at least one of the mutations in each affected individual is hypomorphic. Our results characterized a unique human skeletal phenotype caused by CSF1R deficiency and implied that bi-allelic CSF1R mutations cause a spectrum of neurological and skeletal disorders, probably depending on the residual CSF1R function.


Assuntos
Encéfalo/anormalidades , Leucoencefalopatias/etiologia , Mutação , Osteocondrodisplasias/etiologia , Osteosclerose/etiologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Adolescente , Adulto , Alelos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Pré-Escolar , Feminino , Humanos , Leucoencefalopatias/patologia , Masculino , Camundongos , Camundongos Knockout , Osteocondrodisplasias/patologia , Osteosclerose/patologia , Fenótipo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/fisiologia , Adulto Jovem
10.
J Clin Immunol ; 39(1): 99-105, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30617623

RESUMO

DNA ligase IV (LIG4) syndrome is a rare autosomal recessive disorder, manifesting with variable immune deficiency, growth failure, predisposition to malignancy, and cellular sensitivity to ionizing radiation. The facial features are subtle and variable, as well. Herein, we described an 18-year-old boy, the first child of consanguineous parents who presented with Behçet's disease (BD)-like phenotype, developmental delay, and dysembryoplastic neuroepithelial tumor (DNET). Whole-exome sequencing revealed a homozygous p.Arg871His (c.2612G > A) mutation in LIG4. To date, 35 cases have been reported with LIG4 syndrome. Peripheral blood mononuclear cells of the patient displayed notable sensitivity to ionizing radiation. Flow cytometric annexin V-propidium iodide (PI) and eFluor670 proliferation assays showed accelerated radiation-induced apoptosis and diminished proliferation, respectively. To our knowledge, this is the first case presenting with a BD-like phenotype. This case provides further evidence that rare monogenic defects could be the underlying cause of atypical presentations of some well-described disorders. Moreover, this clinical report further expands the phenotypical spectrum of LIG4 deficiency.


Assuntos
Síndrome de Behçet/genética , DNA Ligase Dependente de ATP/genética , Mutação de Sentido Incorreto/genética , Adolescente , Anormalidades Craniofaciais/genética , Transtornos do Crescimento/genética , Homozigoto , Humanos , Síndromes de Imunodeficiência/genética , Leucócitos Mononucleares , Masculino , Fenótipo , Sequenciamento do Exoma/métodos
11.
Am J Med Genet A ; 176(9): 2009-2016, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30063090

RESUMO

Our understanding of the molecular basis of the genetic disorders of the skeleton has steadily increased, as the application of high-throughput sequencing technology has expanded. One of the newcomers is Spondyloepimetaphyseal dysplasia Faden-Alkuraya type. In this study, we aimed to further delineate the clinical, radiographic, and molecular findings of this entity in five affected individuals from two unrelated families. All patients have short stature, extremity deformities, facial dysmorphism and intellectual disability. The skeletal hallmarks include (a) mild spondylar dysplasia, (b) epimetaphyseal dysplasia of the long bones associated with coxa vara and genu valgum, (c) brachymesophalangy with cone-shaped epiphyses, and (d) craniosynostosis. Unlike the previously reported clinical findings, all patients except one are normocephalic, and all share the clinical findings including craniosynostosis, varying degrees of intellectual disability, facial dysmorphism, and skeletal findings including pes planus, prominent heels, and pectus deformity. Interestingly one of the patients presented with a cemento-ossifying fibrous lesion of the maxilla. Whole exome sequencing revealed a novel homozygous [c.377delT] [p.Ile126fs*] frameshift mutation at exon 2 in one family, while Sanger sequencing revealed a novel homozygous splice site mutation [c.516+2T>A] at exon 4/intron 4 border of RSPRY1 in the other family. In conclusion; we provide further evidence that Spondyloepimetaphyseal dysplasia Faden-Alkuraya type is a RSPRY1-associated skeletal dysplasia with a distinctive phenotype composed of spondyloepimetaphyseal dysplasia, cono-brachydactyly, and craniosynostosis along with recognizable facial features and intellectual disability.


Assuntos
Proteínas de Ligação a DNA/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Fenótipo , Adolescente , Adulto , Braquidactilia , Criança , Craniossinostoses , Análise Mutacional de DNA , Fácies , Feminino , Estudos de Associação Genética/métodos , Testes Genéticos , Humanos , Masculino , Linhagem , Radiografia , Adulto Jovem
12.
Am J Med Genet A ; 173(12): 3143-3152, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28988429

RESUMO

Two sisters from a consanguineous couple were seen in genetics department for facial dysmorphic features and glaucoma. They both had broad foreheads, hypertelorism, megalocorneas, thick eyebrows with synophrys, flat malar regions, broad and bulbous noses, and mild prognathism. Both had glaucoma, younger one also had cataracts and phthisis bulbi. Other findings included bilateral partial cutaneous syndactyly of 2nd and 3rd fingers, history of impacted teeth with dentigerous cyst in the elder one, and intellectual disability (mild and borderline). The sisters were considered to have Elsahy-Waters syndrome. In order to elucidate the underlying molecular cause, sisters and their healthy parents were genotyped by SNP arrays, followed by homozygosity mapping. Homozygous regions were further analyzed by exome sequencing in one affected individual. A homozygous indel variant segregating with the condition was detected in CDH11 (c.1116_1117delinsGATCATCAG, p.(Ile372MetfsTer9)), which was then validated by using Sanger sequencing. CDH11 encodes cadherin 11 (osteo-cadherin) that regulates cell-cell adhesion, cell polarization and migration, as well as osteogenic differentiation. Further experiments revealed that CDH11 expression was decreased in patient-derived fibroblasts as compared to the heterozygous parent and another healthy donor. Immunostaining showed absence of the protein expression in patient fibroblasts. In addition, cell proliferation rate was slow and osteogenic differentiation potential was delayed. We consider that this study reveals loss-of-function mutations in CDH11 as a probable cause of this phenotype. Next generation sequencing in further patients would both prove this gene as causative, and finely delineate this clinical spectrum further contributing in identification of other possibly involved gene(s).


Assuntos
Anormalidades Múltiplas/genética , Caderinas/genética , Anormalidades Craniofaciais/genética , Mutação INDEL , Deficiência Intelectual/genética , Anormalidades Múltiplas/diagnóstico por imagem , Diferenciação Celular , Proliferação de Células , Criança , Pré-Escolar , Anormalidades Craniofaciais/diagnóstico por imagem , Feminino , Homozigoto , Humanos , Deficiência Intelectual/diagnóstico por imagem , Mutação com Perda de Função , Osteogênese/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Síndrome , Sequenciamento do Exoma
13.
N Engl J Med ; 374(26): 2553-2562, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27355534

RESUMO

BACKGROUND: Cortical-bone fragility is a common feature in osteoporosis that is linked to nonvertebral fractures. Regulation of cortical-bone homeostasis has proved elusive. The study of genetic disorders of the skeleton can yield insights that fuel experimental therapeutic approaches to the treatment of rare disorders and common skeletal ailments. METHODS: We evaluated four patients with Pyle's disease, a genetic disorder that is characterized by cortical-bone thinning, limb deformity, and fractures; two patients were examined by means of exome sequencing, and two were examined by means of Sanger sequencing. After a candidate gene was identified, we generated a knockout mouse model that manifested the phenotype and studied the mechanisms responsible for altered bone architecture. RESULTS: In all affected patients, we found biallelic truncating mutations in SFRP4, the gene encoding secreted frizzled-related protein 4, a soluble Wnt inhibitor. Mice deficient in Sfrp4, like persons with Pyle's disease, have increased amounts of trabecular bone and unusually thin cortical bone, as a result of differential regulation of Wnt and bone morphogenetic protein (BMP) signaling in these two bone compartments. Treatment of Sfrp4-deficient mice with a soluble Bmp2 receptor (RAP-661) or with antibodies to sclerostin corrected the cortical-bone defect. CONCLUSIONS: Our study showed that Pyle's disease was caused by a deficiency of sFRP4, that cortical-bone and trabecular-bone homeostasis were governed by different mechanisms, and that sFRP4-mediated cross-regulation between Wnt and BMP signaling was critical for achieving proper cortical-bone thickness and stability. (Funded by the Swiss National Foundation and the National Institutes of Health.).


Assuntos
Densidade Óssea/genética , Remodelação Óssea/genética , Osteocondrodisplasias/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Adolescente , Animais , Biomarcadores/sangue , Proteínas Morfogenéticas Ósseas/metabolismo , Remodelação Óssea/fisiologia , Osso e Ossos/patologia , Osso e Ossos/fisiologia , Pré-Escolar , Modelos Animais de Doenças , Feminino , Deleção de Genes , Homeostase , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Osteocondrodisplasias/fisiopatologia , Análise de Sequência de DNA , Transdução de Sinais , Proteínas Wnt/metabolismo
15.
Eur J Paediatr Neurol ; 18(3): 327-37, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24508361

RESUMO

Intellectual disability (ID) has a prevalence of 3% and is classified according to its severity. An underlying etiology cannot be determined in 75-80% in mild ID, and in 20-50% of severe ID. After it has been shown that copy number variations involving short DNA segments may cause ID, genome-wide SNP microarrays are being used as a tool for detecting submicroscopic copy number changes and uniparental disomy. This study was performed to investigate the presence of copy number changes in patients with ID of unidentified etiology. Affymetrix(®) 6.0 SNP microarray platform was used for analysis of 100 patients and their healthy parents, and data were evaluated using various databases and literature. Etiological diagnoses were made in 12 patients (12%). Homozygous deletion in NRXN1 gene and duplication in IL1RAPL1 gene were detected for the first time. Two separate patients had deletions in FOXP2 and UBE2A genes, respectively, for which only few patients have recently been reported. Interstitial and subtelomeric copy number changes were described in 6 patients, in whom routine cytogenetic tools revealed normal results. In one patient uniparental disomy type of Angelman syndrome was diagnosed. SNP microarrays constitute a screening test able to detect very small genomic changes, with a high etiological yield even in patients already evaluated using traditional cytogenetic tools, offer analysis for uniparental disomy and homozygosity, and thereby are helpful in finding novel disease-causing genes: for these reasons they should be considered as a first-tier genetic screening test in the evaluation of patients with ID and autism.


Assuntos
Predisposição Genética para Doença/etiologia , Deficiência Intelectual/genética , Polimorfismo de Nucleotídeo Único/genética , Dissomia Uniparental/etiologia , Adolescente , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Feminino , Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Humanos , Masculino , Análise em Microsséries , Dissomia Uniparental/genética , Adulto Jovem
16.
Hum Mol Genet ; 22(8): 1643-53, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23335589

RESUMO

Costello syndrome is a congenital disorder comprising a characteristic face, severe feeding difficulties, skeletal, cardiac and skin abnormalities, intellectual disability and predisposition to malignancies. It is caused by heterozygous germline HRAS mutations mostly affecting Gly(12) or Gly(13), which impair HRAS-GTPase activity and result in increased downstream signal flow independent of incoming signals. Functional analyses of rarer HRAS mutations identified in individuals with attenuated Costello syndrome phenotypes revealed altered GDP/GTP nucleotide affinities (p.K117R) and inefficient effector binding (p.E37dup). Thus, both phenotypic and functional variability associated with HRAS mutations are evident. Here, we report on a novel heterozygous HRAS germline mutation (c.187_207dup, p.E63_D69dup) in a girl presenting with a phenotype at the milder end of the Costello syndrome spectrum. The p.E63_D69dup mutation impaired co-precipitation of recombinant HRAS with NF1 GTPase-activating protein (GAP) suggesting constitutive HRAS(E63_D69dup) activation due to GAP insensitivity. Indeed, we identified strongly augmented active HRAS(E63_D69dup) that co-precipitated with effectors RAF1, RAL guanine nucleotide dissociation stimulator and phospholipase C1. However, we could not pull down active HRAS(E63_D69dup) using the target protein PIK3CA, indicating a compromised association between active HRAS(E63_D69dup) and PIK3CA. Accordingly, overexpression of HRAS(E63_D69dup) increased steady-state phosphorylation of MEK1/2 and ERK1/2 downstream of RAF, whereas AKT phosphorylation downstream of phosphoinositide 3-kinase (PI3K) was not enhanced. By analyzing signaling dynamics, we found that HRAS(E63_D69dup) has impaired reagibility to stimuli resulting in reduced and disrupted capacity to transduce incoming signals to the RAF-MAPK and PI3K-AKT cascade, respectively. We suggest that disrupted HRAS reagibility, as we demonstrate for the p.E63_D69dup mutation, is a previously unappreciated molecular pathomechanism underlying Costello syndrome.


Assuntos
Síndrome de Costello/genética , Patologia Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Adolescente , Animais , Classe I de Fosfatidilinositol 3-Quinases , Síndrome de Costello/metabolismo , Síndrome de Costello/patologia , Feminino , Proteínas Ativadoras de GTPase/genética , Duplicação Gênica , Mutação em Linhagem Germinativa , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...