Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 415(16): 3057-3071, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37004549

RESUMO

During its 25 years of existence, the Inorganic Analysis Working Group of the Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology (CCQM IAWG) has achieved much in establishing comparability of measurement results. Impressive work has been done on comparison exercises related to real-world problems in fields such as ecology, food, or health. In more recent attempts, measurements and comparisons were focused on calibration solutions which are the basis of most inorganic chemical measurements. This contribution deals with the question of how to achieve full and transparent SI traceability for the values carried by such solutions. Within this framework, the use of classical primary methods (CPMs) is compared to the use of a primary difference method (PDM). PDM is a method with a dual character, namely a metrological method with a primary character, based on the bundling of many measurement methods for individual impurities, which lead to materials with certified content of the main component. As in classical methods, where small corrections for interferences are accepted, in PDM, many small corrections are bundled. In contrast to classical methods, the PDM is universally applicable to all elements in principle. Both approaches can be used to certify the purity (expressed as mass fraction of the main element) of a high-purity material. This is where the metrological need of National Metrology Institutes (NMIs) for analytical methods meet the challenges of analytical methods. In terms of methods, glow discharge mass spectrometry (GMDS) with sufficient uncertainties for sufficiently small impurity contents is particularly noteworthy for the certification of primary transfer standards (PTS), and isotope dilution mass spectrometry (IDMS), which particularly benefits from PTS (back-spikes) with small uncertainties, is particularly noteworthy for the application. The corresponding relative uncertainty which can be achieved using the PDM is very low (< 10-4). Acting as PTS, they represent the link between the material aspect of the primary calibration solutions and the immaterial world of the International System of Units (SI). The underlying concepts are discussed, the current status of implementation is summarised, and a roadmap of the necessary future activities in inorganic analytical chemistry is sketched. It has to be noted that smaller measurement uncertainties of the purity of high-purity materials not only have a positive effect on chemical measurements, but also trigger new developments and findings in other disciplines such as thermometry or materials science. Primary Transfer Standards (PTSs) are the link between the immaterial world of the International System of Units (SI) and the material aspects of the primary calibration solutions.


Assuntos
Compostos Inorgânicos , Cromatografia Gasosa-Espectrometria de Massas , Padrões de Referência , Espectrometria de Massas/métodos , Calibragem
2.
Anal Bioanal Chem ; 414(15): 4281-4289, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35316348

RESUMO

For more than 110 years, BAM has been producing reference materials for a wide range of application fields. With the development of new analytical methods and new applications as well as continuously emerging more stringent requirements of laboratory accreditation with regard to quality control and metrological traceability, the demand and requirements for reference materials are increasing. This trend article gives an overview of general developments in the field of reference materials as well as developments in selected fields of application in which BAM is active. This includes inorganic and metal analysis, gas analysis, food and consumer products, and geological samples. In addition to these more traditional fields of application, developments in the areas of optical spectroscopy, particularly fluorescence methods, and nanomaterials are considered.


Assuntos
Laboratórios , Nanoestruturas , Controle de Qualidade , Padrões de Referência
3.
Anal Bioanal Chem ; 407(11): 3093-102, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25519725

RESUMO

Gravimetrically prepared mono-elemental reference solutions having a well-known mass fraction of approximately 1 g/kg (or a mass concentration of 1 g/L) define the very basis of virtually all measurements in inorganic analysis. Serving as the starting materials of all standard/calibration solutions, they link virtually all measurements of inorganic analytes (regardless of the method applied) to the purity of the solid materials (high-purity metals or salts) they were prepared from. In case these solid materials are characterized comprehensively with respect to their purity, this link also establishes direct metrological traceability to The International System of Units (SI). This, in turn, ensures the comparability of all results on the highest level achievable. Several national metrology institutes (NMIs) and designated institutes (DIs) have been working for nearly two decades in close cooperation with commercial producers on making an increasing number of traceable reference solutions available. Besides the comprehensive characterization of the solid starting materials, dissolving them both loss-free and completely under strict gravimetric control is a challenging problem in the case of several elements like molybdenum and rhodium. Within the framework of the European Metrology Research Programme (EMRP), in the Joint Research Project (JRP) called SIB09 Primary standards for challenging elements, reference solutions of molybdenum and rhodium were prepared directly from the respective metals with a relative expanded uncertainty associated with the mass fraction of U rel(w) < 0.05 %. To achieve this, a microwave-assisted digestion procedure for Rh and a hotplate digestion procedure for Mo were developed along with highly accurate and precise inductively coupled plasma optical emission spectrometry (ICP OES) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) methods required to assist with the preparation and as dissemination tools.

4.
Anal Bioanal Chem ; 406(29): 7463-71, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25308498

RESUMO

Fast flow glow discharge mass spectrometry with a Grimm-type ion source providing a high sputter rate was used for the determination of major nonmetallic impurities in magnesium. The analytical signal was found to be strongly influenced by the electrical discharge parameters. For calibration by standard addition, synthetic standard samples were produced in two different ways-namely, by pressing and by sintering doped metal powders. The observed sensitivity of the calibration curves was shown to depend on the particle size of the powder. For the magnesium powders, the mass fractions of oxygen, nitrogen, boron, and silicon were determined to be about 0.01 kg·kg(-1) (relative standard deviation approximately 10-20 %), 2,700 mg·kg(-1), 150 mg·kg(-1), and 300 mg·kg(-1), respectively.

5.
J Am Soc Mass Spectrom ; 21(9): 1620-3, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25490911

RESUMO

In this work, we report on the application of hyphenated gas source mass spectrometry to study and understand the mechanism of the reduction-distillation of ZnO using Al powder as reductant in its activated and inactivated form. The experiments revealed that the purity of the Zn metal produced were superior using activated Al with respect to inactivated Al, i.e., m5N8 (99.9998% metallic based) versus m5N3. The achieved purity levels of Zn and the absence of high volatile Cd, Mg, and Sb impurities in the gas phase and the material collected were explained with respect to the impurity elements free-energy values, vapor pressure data, and an observed scavenging effect of the Ta crucible, which was supported by the on-line observed mass spectrometric profiles of the residual gas.

6.
Anal Bioanal Chem ; 395(5): 1471-80, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19756544

RESUMO

Solution-doped metal powder pellets as well as aspirated liquids were used as calibration samples to analyze pure copper and zinc certified reference materials (CRMs) by femtosecond laser ablation ICP-MS. It was demonstrated that calibration by copper pellets resulted in relative deviations up to 20%, whereas fs-LA-ICP-MS among copper-based CRMs led to inaccuracies in the same range unless nominal mass fractions were chosen to be <3 mg/kg. Calibration by zinc pellets generally provided better accuracy. Depending on the analyte considered, deviations below 10% were obtained even for mass fractions close to the limit of quantification. Our data, therefore, indicate solution-doped metal powder pellets to be suitable as calibration samples for fs-LA-ICP-MS of metals. Furthermore, the utilization of liquid standards for calibration was found to result in stronger deviations of up to 50% for both copper and zinc samples which, in addition, turned out to be dependent on the plasma conditions.

7.
Anal Bioanal Chem ; 389(7-8): 2287-96, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17940753

RESUMO

Glow discharge mass spectrometry (GD-MS) is an excellent technique for fast multi-element analysis of pure metals. In addition to metallic impurities, non-metals also can be determined. However, the sensitivity for these elements can be limited due to their high first ionization potentials. Elements with a first ionization potential close to or higher than that of argon, which is commonly used as discharge gas in GD-MS analysis, are ionized with small efficiency only. To improve the sensitivity of GD-MS for such elements, the influence of different glow-discharge parameters on the peak intensity of carbon, chlorine, fluorine, nitrogen, phosphorus, oxygen, and sulfur in pure copper samples was investigated with an Element GD (Thermo Fisher Scientific) GD-MS. Discharge current, discharge gas flow, and discharge gas composition, the last of which turned out to have the greatest effect on the measured intensities, were varied. Argon-helium mixtures were used because of the very high potential of He to ionize other elements, especially in terms of the high energy level of its metastable states. The effect of different Ar-He compositions on the peak intensity of various impurities in pure copper was studied. With Ar-He mixtures, excellent signal enhancements were achieved in comparison with use of pure Ar as discharge gas. In this way, traceable linear calibration curves for phosphorus and sulfur down to the microg kg(-1) range could be established with high sensitivity and very good linearity using pressed powder samples for calibration. This was not possible when pure argon alone was used as discharge gas.

8.
Anal Bioanal Chem ; 386(1): 125-41, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16896623

RESUMO

A new approach was developed for quantitative calibration in GD-MS which can afford reliable and metrologically traceable results for many trace elements and was exemplified for pure copper and pure iron. It can be assumed that the technique can be further improved and applied to the analysis of other pure metals. Pressed copper and iron powder samples were used to calibrate the glow discharge mass spectrometry applied to the analysis of pure copper and iron. The new type of glow discharge mass spectrometer--the Element GD (Thermo Electron Corporation)--was used with a Grimm-type discharge cell for flat samples. Two series of powder samples were prepared for each of the copper and iron matrixes. The powders were quantitatively doped with solutions of graduated and defined concentrations of 40 or 20 analytes, respectively. The mass fractions of the analytes in the dried and homogenized metal powder samples ranged from microg/kg levels up to 10 mg/kg levels. A special technique was developed to press the samples and to form mechanically stable pellets with low risk of contamination. Ion beam ratios of analyte ions to matrix ions were used as measurands. The calibration curves were determined and the linear correlation coefficients were calculated for different intervals of the curves. The linear correlation coefficients are very satisfactory for most of the calibration curves, which include the higher segments of mass fractions; however, they are less satisfactory for the lower segments of the calibration curves. Nevertheless, in many cases rather acceptable and rather promising values were achieved even for these lower segments, representing mass fractions of analytes at ultra-trace level. The comparison of the certified values of different reference materials with the measured values based on calibrations with the pressed powder samples led to deviations less than 30% for most of the considered examples.

9.
Anal Bioanal Chem ; 378(2): 330-41, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14574432

RESUMO

Vector models which progressively lead to a general model for isotope dilution mass spectrometry (IDMS) are presented for the case of two 'monitor isotopes' and one blend involved. They enable one to find the boundary conditions for performing IDMS, and cover the cases of highly enriched isotopes, radioactive isotopes and ratios that are given with different denominator. The models identify the key measurements in their simplest form as well as the conditions which minimise the measurement effort and in some cases the propagated measurement uncertainties. The equations are discussed and compared with other published IDMS equations. Combined with discussion on fundamental aspects of IDMS, this results in an even more 'general' but also more complex IDMS equation.

10.
Anal Chem ; 74(13): 3199-205, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12141683

RESUMO

The feasibility of performing SI-traceable carbon isotope amount ratio measurements following conversion of carbon into CF4 was studied. A procedure for the direct fluorination of carbon with elemental fluorine was developed, and the conversion step was checked for losses, blank contributions, and the absence of systematic isotope effects. Gas chromatography was used to identify and quantify the gaseous fluorination products and to isolate CF4 from byproducts. After fluorination of graphite carbon, CF4 and perfluoroalkanes with up to six carbon atoms were observed as reaction products. Within an uncertainty of 10%, the graphite carbon was fully recovered in the gaseous carbon fluorides, with the main product being CF4 (80-90%) and C2F6 as the major byproduct. The fluorination and GC procedures were found to introduce an alteration not bigger than 0.03 +/- 0.04/1000 on the isotopic composition of CF4. Carbon blank contributions introduced during the fluorination procedure were below 0.5% relative to a typical sample of 4 mg of carbon. For two of the materials investigated, the carbon isotope ratios measured on a differential mass spectrometer were reproducible within a standard deviation of approximately 0.1/1000 for several individual fluorinations. For these materials, the developed fluorination procedure is a straightforward process, which can be used as a foundation to establish SI-traceable measurements of carbon isotope amount ratios. However, for the third graphite material the formation of byproducts (C2F6-C6F14) was found to induce significant isotopic fractionation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA