Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(7): 075101, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37656860

RESUMO

The fusion-born alpha particle heating in magnetically confined fusion machines is a high priority subject for studies. The self-heating of thermonuclear fusion plasma by alpha particles was observed in recent deuterium-tritium (D-T) experiments on the joint European torus. This observation was possible by conducting so-called "afterglow" experiments where transient high fusion yield was achieved with neutral beam injection as the only external heating source, and then termination of the heating at peak performance. This allowed the first direct evidence for electron heating of plasmas by fusion-born alphas to be obtained. Interpretive transport modeling of the relevant D-T and reference deuterium discharges is consistent with the alpha particle heating observation.

2.
Nat Commun ; 13(1): 3941, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803936

RESUMO

Long-pulse operation of a self-sustained fusion reactor using toroidal magnetic containment requires control over the content of alpha particles produced by D-T fusion reactions. On the one hand, MeV-class alpha particles must stay confined to heat the plasma. On the other hand, decelerated helium ash must be expelled before diluting the fusion fuel. Here, we report results of kinetic-magnetohydrodynamic hybrid simulations of a large tokamak plasma that confirm the existence of a parameter window where such energy-selective confinement can be accomplished by exploiting internal relaxation events known as sawtooth crashes. The physical picture - a synergy between magnetic geometry, optimal crash duration and rapid particle motion - is completed by clarifying the role of magnetic drifts. Besides causing asymmetry between co- and counter-going particle populations, magnetic drifts determine the size of the confinement window by dictating where and how much reconnection occurs in particle orbit topology.

3.
Phys Rev Lett ; 107(20): 205002, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22181739

RESUMO

The spectral broadening of characteristic γ-ray emission peaks from the reaction (12)C((3)He,pγ)(14)N was measured in D((3)He) plasmas of the JET tokamak with ion cyclotron resonance heating tuned to the fundamental harmonic of (3)He. Intensities and detailed spectral shapes of γ-ray emission peaks were successfully reproduced using a physics model combining the kinetics of the reacting ions with a detailed description of the nuclear reaction differential cross sections for populating the L1-L8 (14)N excitation levels yielding the observed γ-ray emission. The results provide a paradigm, which leverages knowledge from areas of physics outside traditional plasma physics, for the development of nuclear radiation based methods for understanding and controlling fusion burning plasmas.

4.
Rev Sci Instrum ; 81(10): 10D320, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21058453

RESUMO

High resolution γ-ray spectroscopy measurements were performed in JET (3He)D plasmas with high energy ion populations driven by radio-frequency (RF) heating. One of the first reactions investigated was 12C(3He,pγ)14N, which was observed at low 3He concentrations. In order to interpret the measurements in this work, cross section data for the 12C(3He,pγ)14N reaction are evaluated. Available data for the population of excited states in 14N up to the eighth level are assessed in the range E(3He) = 0­5 MeV. Discrepancies and gaps in the database have been solved by means of interpolations and consistency analysis. The evaluated cross section data are used to predict the intensity ratio of characteristic 2.31 and 1.63 MeV γ-rays.

5.
Rev Sci Instrum ; 79(10): 10E524, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19068513

RESUMO

In fusion plasmas gamma ray emission is caused by reactions of fast particles, such as fusion alpha particles, with impurities. Gamma ray spectroscopy at JET has provided valuable diagnostic information on fast fuel as well as fusion product ions. Improvements of these measurements are needed to fully exploit the flux increase provided by future high power experiments at JET and ITER. Limiting aspects are, for instance, the count rate capability due to a high neutron/gamma background combined with slow detector response and a modest energy resolution due to the low light yield of the scintillators. This paper describes the solutions developed for achieving higher energy resolution, signal to background, and time resolution. The detector design is described based on the new BrLa3 scintillator crystal. The paper will focus on hardware development, including a photomultiplier tube capable of stable operation at counting rate as high as 1 MHz, the magnetic shielding, and the fast digital data acquisition system.

6.
Phys Rev Lett ; 93(11): 115001, 2004 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-15447347

RESUMO

Gamma-ray spectra from nuclear reactions between fusion-born alpha (alpha) particles and Be impurities were measured for the first time in deuterium-tritium plasmas in the Joint European Torus. The time dependence of the measured spectra allowed the determination of the density evolution of fast alpha particles. Correlation between the decay time of the gamma-ray emission and the plasma parameters in different plasma scenarios was established. Results are consistent with classical slowing down of the alpha particles in discharges with high plasma currents and monotonic q-profiles. In low plasma current discharges and in the discharges with large on-axis current holes (extreme reversal central magnetic shear), the gamma-ray emission decay times are shorter than the classical slowing down times, indicating an alpha-particle confinement degradation in such discharges in line with theoretical predictions.

7.
Phys Rev Lett ; 92(23): 235001, 2004 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-15245162

RESUMO

Changes of the toroidal plasma rotation induced by directed waves in the ion-cyclotron range of frequencies (ICRF) have been identified experimentally for the first time on the JET tokamak. The momentum carried by the waves is initially absorbed by fast resonating ions, which subsequently transfer it to the bulk plasma. Thus, the results provide evidence for the influence of ICRF heated fast ions on plasma rotation.

8.
Phys Rev Lett ; 89(11): 115004, 2002 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-12225145

RESUMO

Experiments on the JET tokamak show that the wave-induced pinch in the presence of toroidally asymmetric waves can provide a tool for controlling the profile of ion-cyclotron-resonant 3He ions. Direct evidence for the wave-induced pinch has been obtained from the measured gamma-ray emission profiles. Concurrent differences in the excitation of Alfvén eigenmodes (AEs), sawtooth stabilization, electron temperatures, and fast-ion stored energies are observed. The measured location of the AEs and gamma-ray emission profiles are consistent with the fast-ion radial gradient providing the drive for AEs.

9.
Phys Rev Lett ; 88(10): 105002, 2002 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-11909363

RESUMO

Third-harmonic ion-cyclotron-resonance heating of 4He-beam ions has produced for the first time on the JET tokamak high-energy populations of 4He ions to simulate 3.5 MeV fusion-born alpha (alpha) particles. Acceleration of 4He ions to the MeV energy range is confirmed by gamma-ray emission from the nuclear reaction 9Be(alpha,ngamma) 12C and excitation of Alfvén eigenmodes. Concomitant electron heating and sawtooth stabilization are observed. The scheme could be used in next-step tokamaks to gain information on trapped alpha particles and to test alpha diagnostics in the early nonactivated phase of operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...