Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mov Disord ; 38(12): 2163-2172, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37670483

RESUMO

BACKGROUND: Vacuolar protein sorting 13 homolog A (VPS13A) disease, historically known as chorea-acanthocytosis, is a rare neurodegenerative disorder caused by biallelic mutations in VPS13A, usually resulting in reduced or absent levels of its protein product, VPS13A. VPS13A localizes to contact sites between subcellular organelles, consistent with its recently identified role in lipid transfer between membranes. Mutations are associated with neuronal loss in the striatum, most prominently in the caudate nucleus, and associated marked astrogliosis. There are no other known disease-specific cellular changes (eg, protein aggregation), but autopsy reports to date have been limited, often lacking genetic or biochemical diagnostic confirmation. OBJECTIVE: The goal of this study was to characterize neuropathological findings in the brains of seven patients with VPS13A disease (chorea-acanthocytosis). METHODS: In this study, we collected brain tissues and clinical data from seven cases of VPS13A for neuropathological analysis. The clinical diagnosis was confirmed by the presence of VPS13A mutations and/or immunoblot showing the loss or reduction of VPS13A protein. Tissues underwent routine, special, and immunohistochemical staining focused on neurodegeneration. Electron microscopy was performed in one case. RESULTS: Gross examination showed severe striatal atrophy. Microscopically, there was neuronal loss and astrogliosis in affected regions. Luxol fast blue staining showed variable lipid accumulation with diverse morphology, which was further characterized by electron microscopy. In some cases, rare degenerating p62- and ubiquitin-positive cells were present in affected regions. Calcifications were present in four cases, being extensive in one. CONCLUSIONS: We present the largest autopsy series of biochemically and genetically confirmed VPS13A disease and identify novel histopathological findings implicating abnormal lipid accumulation. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Neuroacantocitose , Humanos , Autopsia , Núcleo Caudado/metabolismo , Gliose , Lipídeos , Neuroacantocitose/genética , Neuroacantocitose/diagnóstico , Neuroacantocitose/patologia , Proteínas de Transporte Vesicular/genética
2.
Mov Disord ; 38(8): 1535-1541, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37307400

RESUMO

BACKGROUND: Chorea-acanthocytosis (ChAc) is associated with mutations of VPS13A, which encodes for chorein, a protein implicated in lipid transport at intracellular membrane contact sites. OBJECTIVES: The goal of this study was to establish the lipidomic profile of patients with ChAc. METHODS: We analyzed 593 lipid species in the caudate nucleus (CN), putamen, and dorsolateral prefrontal cortex (DLPFC) from postmortem tissues of four patients with ChAc and six patients without ChAc. RESULTS: We found increased levels of bis(monoacylglycerol)phosphate, sulfatide, lysophosphatidylserine, and phosphatidylcholine ether in the CN and putamen, but not in the DLPFC, of patients with ChAc. Phosphatidylserine and monoacylglycerol were increased in the CN and N-acyl phosphatidylserine in the putamen. N-acyl serine was decreased in the CN and DLPFC, whereas lysophosphatidylinositol was decreased in the DLPFC. CONCLUSIONS: We present the first evidence of altered sphingolipid and phospholipid levels in the brains of patients with ChAc. Our observations are congruent with recent findings in cellular and animal models, and implicate defects of lipid processing in VPS13A disease pathophysiology. © 2023 International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Neuroacantocitose , Animais , Humanos , Neuroacantocitose/genética , Neuroacantocitose/metabolismo , Fosfolipídeos/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transporte Vesicular/genética , Encéfalo/metabolismo
3.
bioRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37131768

RESUMO

Walking is a slow gait which is particularly adaptable to meet internal or external needs and is prone to maladaptive alterations that lead to gait disorders. Alterations can affect speed, but also style (the way one walks). While slowed speed may signify the presence of a problem, style represents the hallmark essential for clinical classification of gait disorders. However, it has been challenging to objectively capture key stylistic features while uncovering neural substrates driving these features. Here we revealed brainstem hotspots that drive strikingly different walking styles by employing an unbiased mapping assay that combines quantitative walking signatures with focal, cell type specific activation. We found that activation of inhibitory neurons that mapped to the ventromedial caudal pons induced slow motion-like style. Activation of excitatory neurons that mapped to the ventromedial upper medulla induced shuffle-like style. Contrasting shifts in walking signatures distinguished these styles. Activation of inhibitory and excitatory neurons outside these territories or of serotonergic neurons modulated walking speed, but without walking signature shifts. Consistent with their contrasting modulatory actions, hotspots for slow-motion and shuffle-like gaits preferentially innervated different substrates. These findings lay the basis for new avenues to study mechanisms underlying (mal)adaptive walking styles and gait disorders.

4.
Mov Disord ; 37(5): 1093-1097, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35261103

RESUMO

BACKGROUND: Effective dissemination of scientific results depends on competent peer reviewers. Participating as a reviewer is important for academic advancement, although no formal training in peer review has existed in the movement disorders field. OBJECTIVES: To report the design, implementation, and outcomes of a Peer Reviewing Education and Mentoring Program. METHODS: We enrolled 10 participants in a 1-year mentored program with didactic training followed by two peer reviews with feedback from a senior mentor. Outcomes measures were an objective skills assessment and subjective questionnaire. RESULTS: Participants were diverse in gender, age, and background. All participants were deemed competent reviewers by their mentors upon completion. Objective skills improved after didactic training and self-assessment increased significantly after program completion (19.5 [12-25] to 29 [25-30], P < 0.001). CONCLUSIONS: This dedicated program helped participants gain competence and confidence in the peer review process. We plan to continue the program while improving educational methods and assessments. © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Tutoria , Transtornos dos Movimentos , Humanos , Mentores , Grupo Associado
5.
J Vis Exp ; (179)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35129178

RESUMO

Stereotaxic surgery to target brain sites in mice is commonly guided by skull landmarks. Access is then obtained via burr holes drilled through the skull. This standard approach can be challenging for targets in the caudal brainstem and upper cervical cord due to specific anatomical challenges as these sites are remote from skull landmarks, leading to imprecision. Here we outline an alternative stereotaxic approach via the cisterna magna that has been used to target discrete regions of interest in the caudal brainstem and upper cervical cord. The cisterna magna extends from the occipital bone to the atlas (i.e., the second vertebral bone), is filled with cerebrospinal fluid, and is covered by dura mater. This approach provides a reproducible route of access to select central nervous system (CNS) structures that are otherwise hard to reach due to anatomical barriers. Furthermore, it allows for direct visualization of brainstem landmarks in close proximity to the target sites, increasing accuracy when delivering small injection volumes to restricted regions of interest in the caudal brainstem and upper cervical cord. Finally, this approach provides an opportunity to avoid the cerebellum, which can be important for motor and sensorimotor studies.


Assuntos
Medula Cervical , Cisterna Magna , Animais , Encéfalo , Tronco Encefálico/cirurgia , Medula Cervical/diagnóstico por imagem , Medula Cervical/cirurgia , Cisterna Magna/diagnóstico por imagem , Cisterna Magna/cirurgia , Camundongos , Pescoço , Medula Espinal/diagnóstico por imagem , Medula Espinal/cirurgia
7.
Artigo em Inglês | MEDLINE | ID: mdl-32272129

RESUMO

Addictions involve a spectrum of behaviors that encompass features of impulsivity and compulsivity, herein referred to as impulsive-compulsive spectrum disorders (ICSDs). The etiology of ICSDs likely involves a complex interplay among neurobiological, psychological and social risk factors. Neurobiological risk factors include the status of the neuroanatomical circuits that govern ICSDs. These circuits can be altered by disease, as well as exogenous influences such as centrally-acting pharmacologics. The 'poster child' for this scenario is Parkinson's disease (PD) medically managed by pharmacological treatments. PD is a progressive neurodegenerative disease that involves a gradual loss of dopaminergic neurons largely within nigrostriatal projections. Replacement therapy includes dopamine receptor agonists that directly activate postsynaptic dopamine receptors (bypassing the requirement for functioning presynaptic terminals). Some clinically useful dopamine agonists, e.g., pramipexole and ropinirole, exhibit high affinity for the D2/D3 receptor subtypes. These agonists provide excellent relief from PD motor symptoms, but some patients exhibit debilitating ICSD. Teasing out the neuropsychiatric contribution of PD-associated pathology from the drugs used to treat PD motor symptoms is challenging. In this review, we posit that modern clinical and preclinical research converge on the conclusion that dopamine replacement therapy can mediate addictions in PD and other neurological disorders. We provide five categories of evidences that align with this position: (i) ICSD prevalence is greater with D2/D3 receptor agonist therapy vs PD alone. (ii) Capacity of dopamine replacement therapy to produce addiction-like behaviors is independent of disease for which the therapy is being provided. (iii) ICSD-like behaviors are recapitulated in laboratory rats with and without PD-like pathology. (iv) Behavioral pathology co-varies with drug exposure. (v) ICSD Features of ICSDs are consistent with agonist pharmacology and neuroanatomical substrates of addictions. Considering the underpinnings of ICSDs in PD should not only help therapeutic decision-making in neurological disorders, but also apprise ICSDs in general.


Assuntos
Comportamento Aditivo/tratamento farmacológico , Comportamento Aditivo/etiologia , Agonistas de Dopamina/uso terapêutico , Dopamina/uso terapêutico , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Animais , Comportamento Aditivo/psicologia , Humanos , Doença de Parkinson/psicologia , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D3/efeitos dos fármacos
10.
J Assoc Res Otolaryngol ; 13(1): 67-80, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21969022

RESUMO

Cochlear implant listeners receive auditory stimulation through amplitude-modulated electric pulse trains. Auditory nerve studies in animals demonstrate qualitatively different patterns of firing elicited by low versus high pulse rates, suggesting that stimulus pulse rate might influence the transmission of temporal information through the auditory pathway. We tested in awake guinea pigs the temporal acuity of auditory cortical neurons for gaps in cochlear implant pulse trains. Consistent with results using anesthetized conditions, temporal acuity improved with increasing pulse rates. Unlike the anesthetized condition, however, cortical neurons responded in the awake state to multiple distinct features of the gap-containing pulse trains, with the dominant features varying with stimulus pulse rate. Responses to the onset of the trailing pulse train (Trail-ON) provided the most sensitive gap detection at 1,017 and 4,069 pulse-per-second (pps) rates, particularly for short (25 ms) leading pulse trains. In contrast, under conditions of 254 pps rate and long (200 ms) leading pulse trains, a sizeable fraction of units demonstrated greater temporal acuity in the form of robust responses to the offsets of the leading pulse train (Lead-OFF). Finally, TONIC responses exhibited decrements in firing rate during gaps, but were rarely the most sensitive feature. Unlike results from anesthetized conditions, temporal acuity of the most sensitive units was nearly as sharp for brief as for long leading bursts. The differences in stimulus coding across pulse rates likely originate from pulse rate-dependent variations in adaptation in the auditory nerve. Two marked differences from responses to acoustic stimulation were: first, Trail-ON responses to 4,069 pps trains encoded substantially shorter gaps than have been observed with acoustic stimuli; and second, the Lead-OFF gap coding seen for <15 ms gaps in 254 pps stimuli is not seen in responses to sounds. The current results may help to explain why moderate pulse rates around 1,000 pps are favored by many cochlear implant listeners.


Assuntos
Córtex Auditivo/fisiologia , Implante Coclear , Surdez/fisiopatologia , Surdez/terapia , Vigília , Estimulação Acústica/métodos , Potenciais de Ação/fisiologia , Anestesia , Animais , Limiar Auditivo/fisiologia , Feminino , Cobaias , Percepção Sonora/fisiologia , Masculino , Tempo de Reação/fisiologia
11.
J Neurophysiol ; 103(1): 531-42, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19923242

RESUMO

Cochlear implants stimulate the auditory nerve with amplitude-modulated (AM) electric pulse trains. Pulse rates >2,000 pulses per second (pps) have been hypothesized to enhance transmission of temporal information. Recent studies, however, have shown that higher pulse rates impair phase locking to sinusoidal AM in the auditory cortex and impair perceptual modulation detection. Here, we investigated the effects of high pulse rates on the temporal acuity of transmission of pulse trains to the auditory cortex. In anesthetized guinea pigs, signal-detection analysis was used to measure the thresholds for detection of gaps in pulse trains at rates of 254, 1,017, and 4,069 pps and in acoustic noise. Gap-detection thresholds decreased by an order of magnitude with increases in pulse rate from 254 to 4,069 pps. Such a pulse-rate dependence would likely influence speech reception through clinical speech processors. To elucidate the neural mechanisms of gap detection, we measured recovery from forward masking after a 196.6-ms pulse train. Recovery from masking was faster at higher carrier pulse rates and masking increased linearly with current level. We fit the data with a dual-exponential recovery function, consistent with a peripheral and a more central process. High-rate pulse trains evoked less central masking, possibly due to adaptation of the response in the auditory nerve. Neither gap detection nor forward masking varied with cortical depth, indicating that these processes are likely subcortical. These results indicate that gap detection and modulation detection are mediated by two separate neural mechanisms.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Implantes Cocleares , Estimulação Acústica , Potenciais de Ação , Análise de Variância , Animais , Nervo Coclear/fisiologia , Estimulação Elétrica , Feminino , Cobaias , Modelos Lineares , Masculino , Microeletrodos , Mascaramento Perceptivo/fisiologia , Detecção de Sinal Psicológico/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...