Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Pediatr ; 23(Suppl 2): 569, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968578

RESUMO

BACKGROUND: Millions of newborns die annually from preventable causes, with the highest rates occurring in Africa. Reducing neonatal mortality requires investment to scale hospital care, which includes providing hospitals with appropriate technology to care for small and sick newborns. Expensive medical devices designed for high-resource settings often fail to withstand conditions in low-resource hospitals, including humidity, dust, frequent user turnover, complex maintenance, lack of stable power, or difficulty sourcing expensive consumables. Rigorous evaluation protocols are needed to identify effective, affordable, rugged, and easy-to-use medical devices appropriate for quality hospital-based newborn care in low-resource hospitals. METHODS: We developed an evidence-based technology review process to identify medical devices suitable for small and sick newborn care in low-resource hospitals. The eight-step process consists of: identifying devices needed for effective newborn care; defining Target Product Profiles (TPPs); identifying commercially-available products that may meet TPPs; conducting desk research to evaluate technologies against TPPs; performing technical performance verification testing under laboratory conditions; verifying technical performance after exposure to heat, humidity, dust, and power loss; performing usability evaluations with nurses, and qualifying devices that pass all steps. Devices were purchased, installed, and monitored in newborn wards across Kenya, Malawi, Nigeria, and Tanzania. RESULTS: Of 271 devices considered, only 45 (16.6%) met corresponding TPPs based on desk research. Thirty-nine were purchased and evaluated in the laboratory; five (12.8%) failed to meet TPPs. Thirty-four products passing laboratory evaluation underwent short-term environmental testing; only one (2.9%) device failed. Thirty-seven products underwent usability testing with 127 clinicians; surprisingly, 14 (37.8%) failed to meet TPPs. Twenty-three products passed all evaluations, and 2457 devices were installed across 65 newborn wards in Kenya, Malawi, Nigeria, and Tanzania. Continuous device monitoring reported minimal device failures, with failed devices typically returned to service within two days, resulting in an average uptime (service days divided by days installed) of 99%. CONCLUSION: An evidence-based device selection process can improve procurement of effective, affordable, rugged, usable newborn care devices for low-resource hospitals, and feedback to manufacturers can improve device quality. Similar processes could be adapted beyond newborn care to identify medical devices suitable for implementation in any low-resource setting.


Assuntos
Cemitérios , Hospitais , Recém-Nascido , Humanos , Mortalidade Infantil , Quênia , Poeira
2.
BMC Pediatr ; 23(Suppl 2): 564, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968603

RESUMO

BACKGROUND: Medical devices are critical to providing high-quality, hospital-based newborn care, yet many of these devices are unavailable in low- and middle-income countries (LMIC) and are not designed to be suitable for these settings. Target Product Profiles (TPPs) are often utilised at an early stage in the medical device development process to enable user-defined performance characteristics for a given setting. TPPs can also be applied to assess the profile and match of existing devices for a given context. METHODS: We developed initial TPPs for 15 newborn product categories for LMIC settings. A Delphi-like process was used to develop the TPPs. Respondents completed an online survey where they scored their level of agreement with each of the proposed performance characteristics for each of the 15 devices. Characteristics with < 75% agreement between respondents were discussed and voted on using Mentimeter™ at an in-person consensus meeting. FINDINGS: The TPP online survey was sent to 180 people, of which 103 responded (57%). The majority of respondents were implementers/clinicians (51%, 53/103), with 50% (52/103) from LMIC. Across the 15 TPPs, 403 (60%) of the 668 performance characteristics did not achieve > 75% agreement. Areas of disagreement were voted on by 69 participants at an in-person consensus meeting, with consensus achieved for 648 (97%) performance characteristics. Only 20 (3%) performance characteristics did not achieve consensus, most (15/20) relating to quality management systems. UNICEF published the 15 TPPs in April 2020, accompanied by a report detailing the online survey results and consensus meeting discussion, which has been viewed 7,039 times (as of January 2023). CONCLUSIONS: These 15 TPPs can inform developers and enable implementers to select neonatal care products for LMIC. Over 2,400 medical devices and diagnostics meeting these TPPs have been installed in 65 hospitals in Nigeria, Tanzania, Kenya, and Malawi through the NEST360 Alliance. Twenty-three medical devices identified and qualified by NEST360 meet nearly all performance characteristics across 11 of the 15 TPPs. Eight of the 23 qualified medical devices are available in the UNICEF Supply Catalogue. Some developers have adjusted their technologies to meet these TPPs. There is potential to adapt the TPP process beyond newborn care.


Assuntos
Nações Unidas , Recém-Nascido , Humanos , Quênia , Malaui , Nigéria , Tanzânia
3.
BMC Pediatr ; 23(Suppl 2): 566, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968613

RESUMO

BACKGROUND: High-quality neonatal care requires sufficient functional medical devices, furniture, fixtures, and use by trained healthcare workers, however there is lack of publicly available tools for quantification and costing. This paper describes development and use of a planning and costing tool regarding furniture, fixtures and devices to support scale-up of WHO level-2 neonatal care, for national and global newborn survival targets. METHODS: We followed a systematic process. First, we reviewed planning and costing tools of relevance. Second, we co-designed a new tool to estimate furniture and device set-up costs for a default 40-bed level-2 neonatal unit, incorporating input from multi-disciplinary experts and newborn care guidelines. Furniture and device lists were based off WHO guidelines/norms, UNICEF and national manuals/guides. Due to lack of evidence-based quantification, ratios were based on operational manuals, multi-country facility assessment data, and expert opinion. Default unit costs were from government procurement agency costs in Kenya, Nigeria, and Tanzania. Third, we refined the tool by national use in Tanzania. RESULTS: The tool adapts activity-based costing (ABC) to estimate quantities and costs to equip a level-2 neonatal unit based on three components: (1) furniture/fixtures (18 default but editable items); (2) neonatal medical devices (16 product categories with minimum specifications for use in low-resource settings); (3) user training at device installation. The tool was used in Tanzania to generate procurement lists and cost estimates for level-2 scale-up in 171 hospitals (146 District and 25 Regional Referral). Total incremental cost of all new furniture and equipment acquisition, installation, and user training were US$93,000 per District hospital (level-2 care) and US$346,000 per Regional Referral hospital. Estimated cost per capita for whole-country district coverage was US$0.23, representing 0.57% increase in government health expenditure per capita and additional 0.35% for all Regional Referral hospitals. CONCLUSION: Given 2.3 million neonatal deaths and potential impact of level-2 newborn care, rational and efficient planning of devices linked to systems change is foundational. In future iterations, we aim to include consumables, spare parts, and maintenance cost options. More rigorous implementation research data are crucial to formulating evidence-based ratios for devices numbers per baby. Use of this tool could help overcome gaps in devices numbers, advance efficiency and quality of neonatal care.


Assuntos
Decoração de Interiores e Mobiliário , Morte Perinatal , Lactente , Recém-Nascido , Feminino , Humanos , Tanzânia , Quênia , Nigéria
4.
BMJ Open Ophthalmol ; 8(1)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37493654

RESUMO

BACKGROUND: As more preterm infants survive, complications of preterm birth, including retinopathy of prematurity (ROP), become more prevalent. ROP rates and blindness from ROP are higher in low-income and middle-income countries, where exposure to risk factors can be higher and where detection and treatment of ROP are under-resourced or non-existent. Access to low-cost imaging devices would improve remote screening capabilities for ROP. METHODS: Target product profiles (TPPs) are developed early in the medical device development process to define the setting, target user and range of product requirements. A Delphi-like process, consisting of an online survey and consensus meeting, was used to develop a TPP for an ROP imaging device, collecting feedback on a proposed set of 64 product requirements. RESULTS: Thirty-six stakeholders from 17 countries provided feedback: clinicians (72%), product developers (14%), technicians (6%) and other (8%). Thirty-six per cent reported not currently screening for ROP, with cited barriers including cost (44%), no training (17%) and poor image quality (16%). Among those screening (n=23), 48% use more than one device, with the most common being an indirect ophthalmoscope (87%), followed by RetCam (26%) and smartphone with image capture (26%). Consensus was reached on 53 (83%) product requirements. The 11 remaining were discussed at the consensus meeting, and all but two achieved consensus. CONCLUSIONS: This TPP process was novel in that it successfully brought together diverse stakeholders to reach consensus on the product requirements for an ROP imaging devices. The resulting TPP provides a framework from which innovators can develop prototypes.


Assuntos
Nascimento Prematuro , Retinopatia da Prematuridade , Lactente , Feminino , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Retinopatia da Prematuridade/diagnóstico , Região de Recursos Limitados , Pobreza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...