Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 339(6120): 690-3, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23328395

RESUMO

The retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) melanoma differentiation-associated protein 5 (MDA5) senses cytoplasmic viral RNA and activates antiviral innate immunity. To reveal how paramyxoviruses counteract this response, we determined the crystal structure of the MDA5 adenosine 5'-triphosphate (ATP)-hydrolysis domain in complex with the viral inhibitor V protein. The V protein unfolded the ATP-hydrolysis domain of MDA5 via a ß-hairpin motif and recognized a structural motif of MDA5 that is normally buried in the conserved helicase fold. This leads to disruption of the MDA5 ATP-hydrolysis site and prevention of RNA-bound MDA5 filament formation. The structure explains why V proteins inactivate MDA5, but not RIG-I, and mutating only two amino acids in RIG-I induces robust V protein binding. Our results suggest an inhibition mechanism of RLR signalosome formation by unfolding of receptor and inhibitor.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Vírus da Parainfluenza 5 , RNA de Cadeia Dupla/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Células HEK293 , Humanos , Hidrólise , Imunidade Inata , Helicase IFIH1 Induzida por Interferon , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Vírus da Parainfluenza 5/imunologia , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Receptores Imunológicos , Transdução de Sinais , Sus scrofa , Proteínas Virais/genética
2.
Nat Struct Mol Biol ; 17(1): 133-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20010839

RESUMO

Protein conformation is critically linked to function and often controlled by interactions with regulatory factors. Here we report the selection of camelid-derived single-domain antibodies (nanobodies) that modulate the conformation and spectral properties of the green fluorescent protein (GFP). One nanobody could reversibly reduce GFP fluorescence by a factor of 5, whereas its displacement by a second nanobody caused an increase by a factor of 10. Structural analysis of GFP-nanobody complexes revealed that the two nanobodies induce subtle opposing changes in the chromophore environment, leading to altered absorption properties. Unlike conventional antibodies, the small, stable nanobodies are functional in living cells. Nanobody-induced changes were detected by ratio imaging and used to monitor protein expression and subcellular localization as well as translocation events such as the tamoxifen-induced nuclear localization of estrogen receptor. This work demonstrates that protein conformations can be manipulated and studied with nanobodies in living cells.


Assuntos
Anticorpos/metabolismo , Camelus/imunologia , Fluorescência , Proteínas de Fluorescência Verde/química , Modelos Moleculares , Conformação Proteica , Animais , Cristalização , Proteínas de Fluorescência Verde/metabolismo , Espectrometria de Fluorescência
3.
Nucleic Acids Res ; 37(6): 2014-25, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19208642

RESUMO

RIG-I and MDA5 sense cytoplasmic viral RNA and set-off a signal transduction cascade, leading to antiviral innate immune response. The third RIG-I-like receptor, LGP2, differentially regulates RIG-I- and MDA5-dependent RNA sensing in an unknown manner. All three receptors possess a C-terminal regulatory domain (RD), which in the case of RIG-I senses the viral pattern 5'-triphosphate RNA and activates ATP-dependent signaling by RIG-I. Here we report the 2.6 A crystal structure of LGP2 RD along with in vitro and in vivo functional analyses and a homology model of MDA5 RD. Although LGP2 RD is structurally related to RIG-I RD, we find it rather binds double-stranded RNA (dsRNA) and this binding is independent of 5'-triphosphates. We identify conserved and receptor-specific parts of the RNA binding site. Latter are required for specific dsRNA binding by LGP2 RD and could confer pattern selectivity between RIG-I-like receptors. Our data furthermore suggest that LGP2 RD modulates RIG-I-dependent signaling via competition for dsRNA, another pattern sensed by RIG-I, while a fully functional LGP2 is required to augment MDA5-dependent signaling.


Assuntos
RNA Helicases/química , RNA de Cadeia Dupla/química , Proteínas de Ligação a RNA/química , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Proteína DEAD-box 58 , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Humanos , Helicase IFIH1 Induzida por Interferon , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Polifosfatos/química , Ligação Proteica , Estrutura Terciária de Proteína , RNA Helicases/genética , RNA Helicases/metabolismo , RNA de Cadeia Dupla/metabolismo , Receptores Imunológicos , Espalhamento a Baixo Ângulo , Transdução de Sinais , Difração de Raios X
4.
Science ; 323(5917): 1070-4, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19119185

RESUMO

Retinoic acid inducible-gene I (RIG-I) is a cytosolic multidomain protein that detects viral RNA and elicits an antiviral immune response. Two N-terminal caspase activation and recruitment domains (CARDs) transmit the signal, and the regulatory domain prevents signaling in the absence of viral RNA. 5'-triphosphate and double-stranded RNA (dsRNA) are two molecular patterns that enable RIG-I to discriminate pathogenic from self-RNA. However, the function of the DExH box helicase domain that is also required for activity is less clear. Using single-molecule protein-induced fluorescence enhancement, we discovered a robust adenosine 5'-triphosphate-powered dsRNA translocation activity of RIG-I. The CARDs dramatically suppress translocation in the absence of 5'-triphosphate, and the activation by 5'-triphosphate triggers RIG-I to translocate preferentially on dsRNA in cis. This functional integration of two RNA molecular patterns may provide a means to specifically sense and counteract replicating viruses.


Assuntos
Trifosfato de Adenosina/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA de Cadeia Dupla/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Animais , Linhagem Celular , Citosol/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Cinética , Ácidos Nucleicos Heteroduplexes , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Viral/metabolismo , Receptores de Reconhecimento de Padrão/química , Receptores de Reconhecimento de Padrão/genética , Transdução de Sinais , Temperatura
5.
Proc Natl Acad Sci U S A ; 105(43): 16743-8, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-18948594

RESUMO

The caspase recruitment domain (CARD) of intracellular adaptors and sensors plays a critical role in the assembly of signaling complexes involved in innate host defense against pathogens and in the regulation of inflammatory responses. The cytosolic receptor retinoic acid-inducible gene-I (RIG-I) recognizes viral RNA in a 5'-triphosphate-dependent manner and initiates an antiviral signaling cascade. Upon viral infection, the N-terminal CARDs of RIG-I undergo the K(63)-linked ubiquitination induced by tripartite motif protein 25 (TRIM25), critical for the interaction of RIG-I with its downstream signaling partner MAVS/VISA/IPS-1/Cardif. Here, we demonstrate the distinct roles of RIG-I first and second CARD in TRIM25-mediated RIG-I ubiquitination: TRIM25 binds the RIG-I first CARD and subsequently ubiquitinates its second CARD. The T(55)I mutation in RIG-I first CARD abolishes TRIM25 interaction, whereas the K(172)R mutation in the second CARD eliminates polyubiquitin attachment. The necessity of the intact tandem CARD for RIG-I function is further evidenced by a RIG-I splice variant (SV) whose expression is robustly up-regulated upon viral infection. The RIG-I SV carries a short deletion (amino acids 36-80) within the first CARD and thereby loses TRIM25 binding, CARD ubiquitination, and downstream signaling ability. Furthermore, because of its robust inhibition of virus-induced RIG-I multimerization and RIG-I-MAVS signaling complex formation, this SV effectively suppresses the RIG-I-mediated IFN-beta production. This study not only elucidates the vital role of the intact tandem CARD for TRIM25-mediated RIG-I activation but also identifies the RIG-I SV as an off-switch regulator of its own signaling pathway.


Assuntos
RNA Helicases DEAD-box/imunologia , Imunidade Inata , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Sinalização CARD/imunologia , Linhagem Celular Tumoral , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Humanos , Mutação , Isoformas de Proteínas , Receptores Imunológicos , Transdução de Sinais/imunologia , Proteínas com Motivo Tripartido , Ubiquitinação , Regulação para Cima/imunologia
6.
Mol Cell ; 29(2): 169-79, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18243112

RESUMO

The ATPase RIG-I senses viral RNAs that contain 5'-triphosphates in the cytoplasm. It initiates a signaling cascade that activates innate immune response by interferon and cytokine production, providing essential antiviral protection for the host. The mode of RNA 5'-triphosphate sensing by RIG-I remains elusive. We show that the C-terminal regulatory domain RD of RIG-I binds viral RNA in a 5'-triphosphate-dependent manner and activates the RIG-I ATPase by RNA-dependent dimerization. The crystal structure of RD reveals a zinc-binding domain that is structurally related to GDP/GTP exchange factors of Rab-like GTPases. The zinc coordination site is essential for RIG-I signaling and is also conserved in MDA5 and LGP2, suggesting related RD domains in all three enzymes. Structure-guided mutagenesis identifies a positively charged groove as likely 5'-triphosphate-binding site of RIG-I. This groove is distinct in MDA5 and LGP2, raising the possibility that RD confers ligand specificity.


Assuntos
Adenosina Trifosfatases/metabolismo , RNA Helicases DEAD-box/metabolismo , Polifosfatos/metabolismo , Capuzes de RNA/metabolismo , RNA Viral/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/imunologia , Animais , Sítios de Ligação/genética , Linhagem Celular , Proteína DEAD-box 58 , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/imunologia , Dimerização , Humanos , Imunidade Inata/fisiologia , Helicase IFIH1 Induzida por Interferon , Interferons/genética , Interferons/imunologia , Interferons/metabolismo , Polifosfatos/química , Polifosfatos/imunologia , Estrutura Terciária de Proteína/genética , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/imunologia , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/imunologia , RNA Helicases/metabolismo , RNA Viral/química , RNA Viral/genética , RNA Viral/imunologia , Receptores Imunológicos , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato/genética , Zinco/química , Zinco/imunologia , Zinco/metabolismo , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/imunologia , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA