Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 16(6): 1668-81, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24020678

RESUMO

Dissolved organic matter (DOM) and heterotrophic bacteria are highly diverse components of the ocean system, and their interactions are key in regulating the biogeochemical cycles of major elements. How chemical and phylogenetic diversity are linked remains largely unexplored to date. To investigate interactions between bacterial diversity and DOM, we followed the response of natural bacterial communities to two sources of phytoplankton-derived DOM over six bacterial generation times in continuous cultures. Analyses of total hydrolysable neutral sugars and amino acids, and ultrahigh resolution mass spectrometry revealed large differences in the chemical composition of the two DOM sources. According to 454 pyrosequences of 16S ribosomal ribonucleic acid genes, diatom-derived DOM sustained higher levels of bacterial richness, evenness and phylogenetic diversity than cyanobacteria-derived DOM. These distinct community structures were, however, not associated with specific taxa. Grazing pressure affected bacterial community composition without changing the overall pattern of bacterial diversity levels set by DOM. Our results demonstrate that resource composition can shape several facets of bacterial diversity without influencing the phylogenetic composition of bacterial communities, suggesting functional redundancy at different taxonomic levels for the degradation of phytoplankton-derived DOM.


Assuntos
Bacteroidetes/genética , Proteobactérias/genética , Água do Mar/microbiologia , Cianobactérias/química , Diatomáceas/química , Genes Bacterianos , Fenômenos Microbiológicos , Microbiota/genética , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Filogenia , Fitoplâncton/química , RNA Ribossômico 16S/genética , Água do Mar/química , Soluções
2.
Appl Environ Microbiol ; 78(7): 2402-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22286998

RESUMO

Environmental conditions in the western Arctic Ocean range from constant light and nutrient depletion in summer to complete darkness and sea ice cover in winter. This seasonal environmental variation is likely to have an effect on the use of dissolved organic matter (DOM) by heterotrophic bacteria in surface water. However, this effect is not well studied and we know little about the activity of specific bacterial clades in the surface oceans. The use of DOM by three bacterial subgroups in both winter and summer was examined by microautoradiography combined with fluorescence in situ hybridization. We found selective use of substrates by these groups, although the abundances of Ant4D3 (Antarctic Gammaproteobacteria), Polaribacter (Bacteroidetes), and SAR11 (Alphaproteobacteria) were not different between summer and winter in the Beaufort and Chukchi Seas. The number of cells taking up glucose within all three bacterial groups decreased significantly from summer to winter, while the percentage of cells using leucine did not show a clear pattern between seasons. The uptake of the amino acid mix increased substantially from summer to winter by the Ant4D3 group, although such a large increase in uptake was not seen for the other two groups. Use of glucose by bacteria, but not use of leucine or the amino acid mix, related strongly to inorganic nutrients, chlorophyll a, and other environmental factors. Our results suggest a switch in use of dissolved organic substrates from summer to winter and that the three phylogenetic subgroups examined fill different niches in DOM use in the two seasons.


Assuntos
Bactérias/citologia , Bactérias/metabolismo , Processos Heterotróficos , Estações do Ano , Água do Mar/microbiologia , Alphaproteobacteria/citologia , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Aminoácidos/metabolismo , Regiões Árticas , Bactérias/classificação , Bactérias/genética , Bacteroidetes/citologia , Bacteroidetes/genética , Bacteroidetes/metabolismo , Gammaproteobacteria/citologia , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Glucose/metabolismo , Hibridização in Situ Fluorescente , Leucina/metabolismo , Oceanos e Mares , Radiografia/métodos
3.
Nature ; 413(6858): 772, 2001 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-11677575
4.
Appl Environ Microbiol ; 66(12): 5116-22, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11097877

RESUMO

We determined the compositions of bacterioplankton communities in surface waters of coastal California using clone libraries of 16S rRNA genes and fluorescence in situ hybridization (FISH) in order to compare the community structures inferred from these two culture-independent approaches. The compositions of two clone libraries were quite similar to those of clone libraries of marine bacterioplankton examined by previous studies. Clones from gamma-proteobacteria comprised ca. 28% of the libraries, while approximately 55% of the clones came from alpha-proteobacteria, which dominated the clone libraries. The Cytophaga-Flavobacter group and three others each comprised 10% or fewer of the clone libraries. The community composition determined by FISH differed substantially from the composition implied by the clone libraries. The Cytophaga-Flavobacter group dominated 8 of the 11 communities assayed by FISH, including the two communities assayed using clone libraries. On average only 10% of DAPI (4', 6'-diamidino-2-phenylindole)-stained bacteria were detected by FISH with a probe for alpha-proteobacteria, but 30% of DAPI-stained bacteria appeared to be in the Cytophaga-Flavobacter group as determined by FISH. alpha-Proteobacteria were greatly overrepresented in clone libraries compared to their relative abundance determined by FISH, while the Cytophaga-Flavobacter group was underrepresented in clone libraries. Our data show that the Cytophaga-Flavobacter group can be a numerically dominant component of coastal marine bacterioplankton communities.


Assuntos
Bactérias/genética , Plâncton/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Microbiologia da Água , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Animais , Bactérias/isolamento & purificação , Sequência de Bases , Clonagem Molecular , Cytophaga/genética , Cytophaga/isolamento & purificação , Primers do DNA/genética , Ecossistema , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Biblioteca Gênica , Genes Bacterianos , Hibridização in Situ Fluorescente , Plâncton/isolamento & purificação
5.
Appl Environ Microbiol ; 66(4): 1692-7, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10742262

RESUMO

We used a method that combines microautoradiography with hybridization of fluorescent rRNA-targeted oligonucleotide probes to whole cells (MICRO-FISH) to test the hypothesis that the relative contributions of various phylogenetic groups to the utilization of dissolved organic matter (DOM) depend solely on their relative abundance in the bacterial community. We found that utilization of even simple low-molecular-weight DOM components by bacteria differed across the major phylogenetic groups and often did not correlate with the relative abundance of these bacterial groups in estuarine and coastal environments. The Cytophaga-Flavobacter cluster was overrepresented in the portion of the assemblage consuming chitin, N-acetylglucosamine, and protein but was generally underrepresented in the assemblage consuming amino acids. The amino acid-consuming assemblage was usually dominated by the alpha subclass of the class Proteobacteria, although the representation of alpha-proteobacteria in the protein-consuming assemblages was about that expected from their relative abundance in the entire bacterial community. In our experiments, no phylogenetic group dominated the consumption of all DOM, suggesting that the participation of a diverse assemblage of bacteria is essential for the complete degradation of complex DOM in the oceans. These results also suggest that the role of aerobic heterotrophic bacteria in carbon cycling would be more accurately described by using three groups instead of the single bacterial compartment currently used in biogeochemical models.


Assuntos
Ecossistema , Compostos Orgânicos/metabolismo , Proteobactérias/metabolismo , Água do Mar/microbiologia , Cytophaga/metabolismo , Flavobacterium/metabolismo , Hibridização in Situ Fluorescente/métodos , Filogenia , Microbiologia da Água
6.
Appl Environ Microbiol ; 66(3): 1195-201, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10698791

RESUMO

PCR primers were patterned after chitinase genes in four gamma-proteobacteria in the families Alteromonadaceae and Enterobacteriaceae (group I chitinases) and used to explore the occurrence and diversity of these chitinase genes in cultured and uncultured marine bacteria. The PCR results from 104 bacterial strains indicated that this type of chitinase gene occurs in two major groups of marine bacteria, alpha- and gamma-proteobacteria, but not the Cytophaga-Flavobacter group. Group I chitinase genes also occur in some viruses infecting arthropods. Phylogenetic analysis indicated that similar group I chitinase genes occur in taxonomically related bacteria. However, the overall phylogeny of chitinase genes did not correspond to the phylogeny of 16S rRNA genes, possibly due to lateral transfer of chitinase genes between groups of bacteria, but other mechanisms, such as gene duplication, cannot be ruled out. Clone libraries of chitinase gene fragments amplified from coastal Pacific Ocean and estuarine Delaware Bay bacterioplankton revealed similarities and differences between cultured and uncultured bacteria. We had hypothesized that cultured and uncultured chitin-degrading bacteria would be very different, but in fact, clones having nucleotide sequences identical to those of chitinase genes of cultured alpha-proteobacteria dominated both libraries. The other clones were similar but not identical to genes in cultured gamma-proteobacteria, including vibrios and alteromonads. Our results suggest that a closer examination of chitin degradation by alpha-proteobacteria will lead to a better understanding of chitin degradation in the ocean.


Assuntos
Alphaproteobacteria/genética , Quitinases/genética , Gammaproteobacteria/genética , Genes Bacterianos , Água do Mar/microbiologia , Alphaproteobacteria/classificação , Alphaproteobacteria/enzimologia , Oceano Atlântico , Quitina/metabolismo , Clonagem Molecular , Primers do DNA , Delaware , Gammaproteobacteria/classificação , Gammaproteobacteria/enzimologia , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
7.
Appl Environ Microbiol ; 65(6): 2553-7, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10347042

RESUMO

Our understanding of the degradation of organic matter will benefit from a greater appreciation for the genes encoding enzymes involved in the hydrolysis of biopolymers such as chitin, one of the most abundant polymers in nature. To isolate representative and abundant chitinase genes from uncultivated marine bacteria, we constructed libraries of genomic DNA isolated from coastal and estuarine waters. The libraries were screened for genes encoding proteins that hydrolyze a fluorogenic analogue of chitin, 4-methylumbelliferyl beta-D-N,N'-diacetylchitobioside (MUF-diNAG). The abundance of clones capable of MUF-diNAG hydrolysis was higher in the library constructed with DNA from the estuary than in that constructed with DNA from coastal waters, although the abundance of positive clones was also dependent on the method used to screen the library. Plaque assays revealed nine MUF-diNAG-positive clones of 75,000 screened for the estuarine sample and two clones of 750,000 for the coastal sample. A microtiter plate assay revealed approximately 1 positive clone for every 500 clones screened in the coastal library. The number of clones detected with the plaque assay was consistent with estimates of the portion of culturable bacteria that degrade chitin. Our results suggest that culture-dependent methods do not greatly underestimate the portion of marine bacterial communities capable of chitin degradation.


Assuntos
Bactérias/enzimologia , Bactérias/isolamento & purificação , Quitina/metabolismo , Quitinases/metabolismo , Água do Mar/microbiologia , Microbiologia da Água , Bactérias/genética , Biodegradação Ambiental , Quitinases/genética , Meios de Cultura , Biblioteca Gênica , Genes Bacterianos
8.
Appl Environ Microbiol ; 63(2): 408-13, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16535505

RESUMO

Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on (beta)-chitin (isolated from squid pen) than on (alpha)-chitin (isolated from snow crab), probably because of the more open structure of (beta)-chitin. When exposed to different types of chitin, V. harveyi excreted several chitin-degrading proteins into the culture media. Some chitinases were present with all of the tested chitins, while others were unique to a particular chitin. We cloned and identified six separate chitinase genes from V. harveyi. These chitinases appear to be unique based on DNA restriction patterns, immunological data, and enzyme activity. This marine bacterium and probably others appear to synthesize separate chitinases for efficient utilization of different forms of chitin and chitin by-products.

9.
Appl Environ Microbiol ; 60(12): 4284-8, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16349455

RESUMO

Previous work has shown that attachment of Vibrio harveyi to chitin is specific and involves at least two chitin-binding peptides. However, the roles and regulation of these chitin-binding peptides in attachment are still unclear. Here we show that preincubation with the oligomeric sugars composing chitin stimulated chitinase activity, cellular attachment to chitin, and production of chitin-binding peptides. One of these peptides, a 53-kDa peptide, is produced constitutively and appears to mediate initial attachment to chitin. Synthesis of another peptide, a 150-kDa chitin-binding peptide, is induced by chitin and thus may be involved in time-dependent attachment. Coordinated regulation of attachment and degradation of chitin may give bacteria like V. harveyi a selective advantage over other bacteria in nutrient-poor aquatic environments.

10.
Microb Ecol ; 28(2): 255-71, 1994 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24186453

RESUMO

It is now well known that heterotrophic bacteria account for a large portion of total uptake of both phosphate (60% median) and ammonium (30% median) in freshwaters and marine environments. Less clear are the factors controlling relative uptake by bacteria, and the consequences of this uptake on the plankton community and biogeochemical processes, e.g., new production. Some of the variation in reported inorganic nutrient uptake by bacteria is undoubtedly due to methodological problems, but even so, uptake would be expected to vary because of variation in several parameters, perhaps the most interesting being dissolved organic matter. Uptake of ammonium by bacteria is very low whereas uptake of dissolved free amino acids (DFAA) is high in eutrophic estuaries (the Delaware Bay and Chesapeake Bay). The concentrations and turnover of DFAA are insufficient, however, in oligotrophic oceans where bacteria turn to ammonium and nitrate, although the latter only as a last resort. I argue here that high uptake of dissolved organic carbon, which has been questioned, is necessary to balance the measured uptake of dissolved inorganic nitrogen (DIN) in seawater culture experiments. What is problematic is that this DIN uptake exceeds bacterial biomass production. One possibility is that bacteria excrete dissolved organic nitrogen (DON). A recent study offers some support for this hypothesis. Lysis by viruses would also release DON.While ammonium uptake by heterotrophic bacteria has been hypothesized to affect phytoplankton community structure, other impacts on the phytoplankton and biomass production (both total and new) are less clear and need further work. Also, even though bacteria account for a very large fraction of phosphate uptake, how this helps to structure the plankton community has not been examined. What is clear is that the interactions between bacterial and phytoplankton uptake of inorganic nutrients are more complicated than simple competition.

11.
Microb Ecol ; 27(3): 241-51, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-24190338

RESUMO

Previous studies have shown that various microorganisms can enhance the dissolution of silicate minerals at low (<5) or high (>8) pH. However, it was not known if they can have an effect at near-neutral pH. Almost half of 17 isolates examined in this study stimulated bytownite dissolution at near-neutral pH while in a resting state in buffered glucose. Most of the isolates found to stimulate dissolution also oxidized glucose to gluconic acid. More detailed analysis with one of these isolates suggested that this partial oxidation was the predominant, if not sole, mechanism of enhanced dissolution. Enhanced dissolution did not require direct contact between the dissolving mineral and the bacteria. Gluconate-promoted dissolution was also observed with other silicate minerals such as albite, quartz, and kaolinite.

12.
Appl Environ Microbiol ; 59(10): 3280-6, 1993 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16349064

RESUMO

This study examined the hypothesis that solid surfaces may stimulate attached bacteria to produce exopolymers. Addition of sand to shake-flask cultures seemed to induce exopolymer synthesis by a number of subsurface isolates, as revealed by optical microscopy. Several additional lines of evidence indicated that exopolymer production by attached cells (in continuous-flow sand-packed columns) was greater than by their free-living counterparts. Total carbohydrates and extracellular polysaccharides, both normalized to cell protein, were greater (2.5- and 5-fold, respectively) for attached cells than for free-living cells. Also, adsorption of a polyanion-binding dye to the exopolymer fraction was sixfold greater for attached cells than for unattached cells. When surface-grown cells were resuspended in fresh medium, exopolymer production decreased to the level characteristic of unattached cells, which ruled out the possibility that attached cells comprised a subpopulation of sticky mucoid variants. The mechanism by which attachment stimulated exopolymer synthesis did not involve changes of the specific growth rate, growth stage, or limiting nutrient.

13.
Appl Environ Microbiol ; 59(2): 373-9, 1993 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16348865

RESUMO

We examined the mechanism of attachment of the marine bacterium Vibrio harveyi to chitin. Wheat germ agglutinin and chitinase bind to chitin and competitively inhibited the attachment of V. harveyi to chitin, but not to cellulose. Bovine serum albumin and cellulase do not bind to chitin and had no effect on bacterial attachment to chitin. These data suggest that this bacterium recognizes specific attachment sites on the chitin particle. The level of attachment of a chitinase-overproducing mutant of V. harveyi to chitin was about twice as much as that of the uninduced wild type. Detergent-extracted cell membranes inhibited attachment and contained a 53-kDa peptide that was overproduced by the chitinase-overproducing mutant. Three peptides (40, 53, and 150 kDa) were recovered from chitin which had been exposed to membrane extracts. Polyclonal antibodies raised against extracellular chitinase cross-reacted with the 53- and 150-kDa chitin-binding peptides and inhibited attachment, probably by sterically hindering interactions between the chitin-binding peptides and chitin. The 53- and 150-kDa chitin-binding peptides did not have chitinase activity. These results suggest that chitin-binding peptides, especially the 53-kDa chitin-binding peptide and chitinase and perhaps the 150-kDa peptide, mediate the specific attachment of V. harveyi to chitin.

14.
Appl Environ Microbiol ; 58(4): 1374-5, 1992 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16348701

RESUMO

Ribulose 1,5-bisphosphate carboxylase was radiolabelled by in vitro translation, resulting in uniformly labelled ribulose 1,5-bisphosphate carboxylase, and also by reductive methylation. We investigated the degradation of the two forms of radiolabelled protein by natural bacterial populations. Although total hydrolysis of uniformly labelled protein and methylated protein was nearly equal, percent assimilation, respiration, and release as low-molecular-weight material were different. Radioactivity from uniformly labelled protein was approximately equally assimilated into cells, respired as H(2)O, and released as low-molecular-weight material, but radioactivity from the methylated protein was nearly all released as low-molecular-weight material, and little was assimilated or respired.

15.
Microb Ecol ; 24(2): 125-44, 1992 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24193132

RESUMO

We performed a series of seawater culture experiments on surface mixed layer samples during the spring phytoplankton bloom in the North Atlantic Ocean. Diluted (20% unfiltered + 80% 0.22 µm filtered) and untreated "whole" seawater samples were incubated up to 40 hour and sampled periodically for cell numbers, biovolume, and incorporation of (3)H-thymidine and -leucine. Abundance and biovolume increased exponentially at similar rates in diluted and whole samples, suggesting that removal by bacteriovores was low compared with growth. The exponential increase in biovolume was due to increases in cell numbers and mean cell volume. Generation times (i.e., 0.693/µ) averaged 36-53 hour in these surface (10 m) samples. Ninety percent of the tritiated thymidine incorporation (TTI) into cold trichloroacetic acid-insoluble cell fractions was recovered after extraction with NaOH and phenolchloroform, indicating that catabolism of thymidine and its appearance in RNA or protein was very low. The percentage of thymidine recovered in DNA did not change over the 40 hour of incubation and was the same as in water column samples. Rates of thymidine and leucine incorporation also increased exponentially. Incorporation rates tended to increase more rapidly than cell numbers or biovolume, though the differences were not significantly different, due to the small number of samples and variability over the time courses. Differential rates of increase in cellular properties during growth might indicate a lack of coupling between incorporation and production over time scales of hours-days. This in turn may reflect unbalanced growth of bacterial assemblages, which is an adaptation to variable conditions in the upper ocean in this season. Nonequality of rate constants for cells and incorporation yields conversion factors that are either higher or lower than would be calculated from balanced growth (i.e., rates of increase in numbers and incorporation rates equal), depending on the calculation approach chosen. An alternative approach to calculating conversion factors (the modified derivative approach) is proposed, which is insensitive to differential rates of increase of abundance and incorporation.

16.
Appl Environ Microbiol ; 56(12): 3643-8, 1990 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16348369

RESUMO

The relationships among surface energy, adsorbed organic matter, and attached bacterial growth were examined by measuring the degradation of adsorbed ribulose-1,5-bisphosphate carboxylase (a common algal protein) by attached bacteria (Pseudomonas strain S9). We found that surface energy (work of adhesion of water) determined the amount and availability of adsorbed protein and, consequently, the growth of attached bacteria. Percent degradation of adsorbed ribulose-1,5-bisphosphate carboxylase decreased with increasing hydrophobicity of the surface (decreasing work of adhesion). As a result, growth rates of attached bacteria were initially higher on hydrophilic glass than on hydrophobic polyethylene. However, during long (6-h) incubations, growth rates increased with surface hydrophobicity because of increasing amounts of adsorbed protein. Together with previous studies, these results suggest that the number of attached bacteria over time will be a complex function of surface energy. Whereas both protein adsorption and bacterial attachment decrease with increasing surface energy, availability of adsorbed protein and consequently initial bacterial growth rates increase with surface energy.

17.
Appl Environ Microbiol ; 54(8): 1934-9, 1988 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16347706

RESUMO

We examined the simultaneous incorporation of [H]thymidine and [C]leucine to obtain two independent indices of bacterial production (DNA and protein syntheses) in a single incubation. Incorporation rates of leucine estimated by the dual-label method were generally higher than those obtained by the single-label method, but the differences were small (dual/single = 1.1 +/- 0.2 [mean +/- standard deviation]) and were probably due to the presence of labeled leucyl-tRNA in the cold trichloroacetic acid-insoluble fraction. There were no significant differences in thymidine incorporation between dual- and single-label incubations (dual/ single = 1.03 +/- 0.13). Addition of the two substrates in relatively large amounts (25 nM) did not apparently increase bacterial activity during short incubations (<5 h). With the dual-label method we found that thymidine and leucine incorporation rates covaried over depth profiles of the Chesapeake Bay. Estimates of bacterial production based on thymidine and leucine differed by less than 25%. Although the need for appropriate conversion factors has not been eliminated, the dual-label approach can be used to examine the variation in bacterial production while ensuring that the observed variation in incorporation rates is due to real changes in bacterial production rather than changes in conversion factors or introduction of other artifacts.

18.
Appl Environ Microbiol ; 52(5): 992-1000, 1986 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16347229

RESUMO

The purpose of this study was to determine the depth distribution of bacterial biomass and production in a stratified lake and to test techniques to measure bacterial production in anaerobic waters. Bacterial abundance and incorporation of both [H]thymidine and [H]leucine into protein were highest in the metalimnion, at the depth at which oxygen first became unmeasurable. In contrast, [H]thymidine incorporation into DNA was highest in the epilimnion. The ratios of incorporation into DNA/protein averaged 2.2, 0.49, and 0.95 for the epilimnion, metalimnion, and hypolimnion, respectively. Low incorporation into DNA was not due to artifacts associated with the DNA isolation procedure. Recovery of added [H]DNA was about 90% in waters in which the portion of [H]thymidine incorporation into DNA was about 40%. At least some obligate anaerobic bacteria were capable of assimilating thymidine since aeration of anaerobic hypolimnion waters substantially inhibited thymidine incorporation. The depth profile of bacterial production estimated from total thymidine and leucine incorporation and the frequency of dividing cells were all similar, with maximal rates in the metalimnion. However, estimates of bacterial production based on frequency of dividing cells and leucine incorporation were usually significantly higher than estimates based on thymidine incorporation (using conversion factors from the literature), especially in anaerobic hypolimnion waters. These data indicate that the thymidine approach must be examined carefully if it is to be applied to aquatic systems with low oxygen concentrations. Our results also indicate that the interface between the aerobic epilimnion and anaerobic hypolimnion is the site of intense bacterial mineralization and biomass production which deserves further study.

19.
Plant Physiol ; 80(3): 685-91, 1986 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16664685

RESUMO

Distinctive properties are identified in the molecular structure of ribulose, 1,5-bisphosphate carboxylase/oxygenase (RuBPCase) in chlorophyll c-containing algae (i.e., chromophytes). Using purified enzyme from Cryptomonas sp., Coccolithophora sp., and Cylindrotheca fusiformis, we have determined that the RuBPCase holoenzyme of each species has a molecular weight, subunit composition, and isoelectric points of its subunits similar to the purified enzymes from pea and Chlamydomonas reinhardtii. The large subunits from chromophytes exhibit microheterogeneity in their isoelectric points, whereas two to four well-resolved isoelectric variants of the small subunit were observed in each RuBPCase preparation. In spite of the high degree of similarity in terms of physical properties, both the small and large RuBPCase subunits of the chromophytes are structurally different from those of chlorophytes; immunological studies demonstrate that RuBPCase subunits of these two groups have few antigenic determinants in common.

20.
Appl Environ Microbiol ; 43(4): 769-76, 1982 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16345987

RESUMO

We investigated the growth and vertical flux of attached bacteria with floating sediment traps in the Hudson River Plume of the New York Bight during the spring diatom blooms. Traps were floated at the base of the mixed layer (ca. 10 m) for 1-day periods. After recovery, we measured bacterial abundance and rates of [methyl-H]thymidine incorporation in the trap samples. The vertical flux of attached bacteria was estimated with a model formulated to distinguish between bacterial accumulation in traps due to in situ growth and that due to vertical flux. Attached bacterial flux ranged from 0.6 x 10 to 2.0 x 10 cells m day, and attached bacterial settling rates of 0.1 to 1.0 m day were observed during periods of vertical particulate organic carbon flux ranging from 254 to 1,267 mg of C m day. In situ growth of bacteria in sediment traps was unimportant as a source of bacterial increase when compared with vertical flux during our study. The vertical flux of attached bacteria removed 3 to 67% of the total daily bacterial production from the water column. Particulate organic carbon is not significantly mineralized by attached bacteria during its descent to the sea floor in the plume area during this period, when water temperature and grazing rates are at their annual minima.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA