Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (88): e51869, 2014 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-24998224

RESUMO

It is widely acknowledged that the use of general anesthetics can undermine the relevance of electrophysiological or microscopical data obtained from a living animal's brain. Moreover, the lengthy recovery from anesthesia limits the frequency of repeated recording/imaging episodes in longitudinal studies. Hence, new methods that would allow stable recordings from non-anesthetized behaving mice are expected to advance the fields of cellular and cognitive neurosciences. Existing solutions range from mere physical restraint to more sophisticated approaches, such as linear and spherical treadmills used in combination with computer-generated virtual reality. Here, a novel method is described where a head-fixed mouse can move around an air-lifted mobile homecage and explore its environment under stress-free conditions. This method allows researchers to perform behavioral tests (e.g., learning, habituation or novel object recognition) simultaneously with two-photon microscopic imaging and/or patch-clamp recordings, all combined in a single experiment. This video-article describes the use of the awake animal head fixation device (mobile homecage), demonstrates the procedures of animal habituation, and exemplifies a number of possible applications of the method.


Assuntos
Comportamento Animal/fisiologia , Eletrofisiologia/instrumentação , Microscopia/instrumentação , Análise de Célula Única/instrumentação , Animais , Craniotomia/métodos , Eletrofisiologia/métodos , Feminino , Masculino , Camundongos , Microscopia/métodos , Neuroimagem/métodos , Análise de Célula Única/métodos
2.
EMBO J ; 32(16): 2275-86, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23881097

RESUMO

Brain carbonic anhydrases (CAs) are known to modulate neuronal signalling. Using a novel CA VII (Car7) knockout (KO) mouse as well as a CA II (Car2) KO and a CA II/VII double KO, we show that mature hippocampal pyramidal neurons are endowed with two cytosolic isoforms. CA VII is predominantly expressed by neurons starting around postnatal day 10 (P10). The ubiquitous isoform II is expressed in neurons at P20. Both isoforms enhance bicarbonate-driven GABAergic excitation during intense GABAA-receptor activation. P13-14 CA VII KO mice show behavioural manifestations atypical of experimental febrile seizures (eFS) and a complete absence of electrographic seizures. A low dose of diazepam promotes eFS in P13-P14 rat pups, whereas seizures are blocked at higher concentrations that suppress breathing. Thus, the respiratory alkalosis-dependent eFS are exacerbated by GABAergic excitation. We found that CA VII mRNA is expressed in the human cerebral cortex before the age when febrile seizures (FS) occur in children. Our data indicate that CA VII is a key molecule in age-dependent neuronal pH regulation with consequent effects on generation of FS.


Assuntos
Anidrase Carbônica II/metabolismo , Anidrases Carbônicas/metabolismo , Córtex Cerebral/citologia , Neurônios GABAérgicos/metabolismo , Convulsões Febris/enzimologia , Fatores Etários , Análise de Variância , Animais , Northern Blotting , Western Blotting , Anidrase Carbônica II/genética , Anidrases Carbônicas/genética , Córtex Cerebral/metabolismo , Diazepam/toxicidade , Eletroencefalografia , Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Knockout , Ratos , Convulsões Febris/induzido quimicamente , Convulsões Febris/metabolismo
3.
J Neurosci ; 30(46): 15638-42, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21084619

RESUMO

In two recent papers (Rheims et al., 2009; Holmgren et al., 2010), Zilberter and coworkers argue that the well known depolarizing GABA actions that take place at the cellular and network level in the neonatal hippocampus and neocortex in vitro are pathophysiological phenomena, attributable to deficient mitochondrial energy metabolism. In their experiments, supplementing the glucose-containing solution with weak-acid substrates of mitochondrial energy metabolism (such as ß-hydroxy-butyrate, lactate, or pyruvate) abolished the spontaneous network events (giant depolarizing potentials; GDPs) and the underlying depolarizing actions of GABA. In this study, we made electrophysiological recordings of GDPs and monitored the mitochondrial membrane potential (Ψm) and intracellular pH (pH(i)) in CA3 neurons in neonatal rat hippocampal slices. Supplementing the standard physiological solution with l-lactate did not produce a change in Ψm, whereas withdrawal of glucose, in the presence or absence of l-lactate, was followed by a pronounced depolarization of Ψm. Furthermore, d-lactate (a poor substrate of mitochondrial metabolism) caused a prompt inhibition in GDP frequency which was similar to the effect of l-lactate. The suppression of GDPs was strictly proportional to the fall in pH(i) caused by weak carboxylic acids (l-lactate, d-lactate, or propionate) or by an elevated CO(2). The main conclusions of our work are that the inhibitory effect of l-lactate on GDPs is not mediated by mitochondrial energy metabolism, and that glucose at its standard 10 mm concentration is an adequate energy substrate for neonatal neurons in vitro. Notably, changes in pH(i) appear to have a very powerful modulatory effect on GDPs.


Assuntos
Potenciais de Ação/fisiologia , Metabolismo Energético/fisiologia , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Rede Nervosa/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Glucose/fisiologia , Ácido Láctico/farmacologia , Rede Nervosa/fisiologia , Ratos , Ratos Wistar , Ácido gama-Aminobutírico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...