Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(15): 19198-19204, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578032

RESUMO

High-performance flexible temperature sensors are crucial in various technological applications, such as monitoring environmental conditions and human healthcare. The ideal characteristics of these sensors for stable temperature monitoring include scalability, mechanical flexibility, and high sensitivity. Moreover, simplicity and low power consumption will be essential for temperature sensor arrays in future integrated systems. This study introduces a solution-based approach for creating a V2O5 nanowire network temperature sensor on a flexible film. Through optimization of the fabrication conditions, the sensor exhibits remarkable performance, sustaining long-term stability (>110 h) with minimal hysteresis and excellent sensitivity (∼-1.5%/°C). In addition, this study employs machine learning techniques for data interpolation among sensors, thereby enhancing the spatial resolution of temperature measurements and adding tactile mapping without increasing the sensor count. Introducing this methodology results in an improved understanding of temperature variations, advancing the capabilities of flexible-sensor arrays for various applications.

3.
ACS Nano ; 18(3): 2455-2463, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38196098

RESUMO

Mechanical exfoliation methods of two-dimensional materials have been an essential process for advanced devices and fundamental sciences. However, the exfoliation method usually generates various thick flakes, and a bunch of thick bulk flakes usually covers an entire substrate. Here, we developed a method to selectively isolate mono- to quadlayers of transition metal dichalcogenides (TMDCs) by sonication in organic solvents. The analysis reveals the importance of low interface energies between solvents and TMDCs, leading to the effective removal of bulk flakes under sonication. Importantly, a monolayer adjacent to bulk flakes shows cleavage at the interface, and the monolayer can be selectively isolated on the substrate. This approach can extend to preparing a monolayer device with crowded 17 electrode fingers surrounding the monolayer and for the measurement of electrostatic device performance.

4.
ACS Nano ; 17(15): 14981-14989, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37458690

RESUMO

N,N-Dimethylformamide (DMF) is an essential solvent in industries and pharmaceutics. Its market size range was estimated to be 2 billion U.S. dollars in 2022. Monitoring DMF in solution environments in real time is significant because of its toxicity. However, DMF is not a redox-active molecule; therefore, selective monitoring of DMF in solutions, especially in polar aqueous solutions, in real time is extremely difficult. In this paper, we propose a selective DMF sensor using a molybdenum disulfide (MoS2) field-effect transistor (FET). The sensor responds to DMF molecules but not to similar molecules of formamide, N,N-diethylformamide, and N,N-dimethylacetamide. The plausible atomic mechanism is the oxygen substitution sites on MoS2, on which the DMF molecule shows an exceptional orientation. The thin structure of MoS2-FET can be incorporated into a microfluidic chamber, which leads to DMF monitoring in real time by exchanging solutions subsequently. The designed device shows DMF monitoring in NaCl ionic solutions from 1 to 200 µL/mL. This work proposes the concept of selectively monitoring redox-inactive molecules based on the nonideal atomic affinity site on the surface of two-dimensional semiconductors.

5.
Langmuir ; 38(43): 13048-13054, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252205

RESUMO

The interface between conventional semiconductors and aqueous ionic solutions is an important target in chemistry and materials science. Recently, a wide variety of research has been done on transition-metal dichalcogenides (TMDCs) for use as 2D layered semiconductors, and their optoelectronic properties have been widely explored. One representative TMDC, monolayer (1L) MoS2, is known to show a photoluminescence (PL) signal of a direct band gap nature, and the PL intensity is dependent on the carrier concentration. Various methods of 1L MoS2 carrier modulation have been shown to enhance the PL intensity in dry environments. In contrast, enhancement in an aqueous environment is limited, and a strategy to design an interface with aqueous media has not yet been established. One proposed idea was an aqueous acid interface; however, the enhancement of the PL with this method was usually minimal, about 1 order of magnitude. In this study, we demonstrate a method to achieve strong PL enhancement in 1L MoS2 in an aqueous media by incorporating bis(trifluoromethane)sulfonyl anion (TFSI- ion) in an acidic environment. With the addition of the TFSI- ion in an acidic environment, the enhancement factor of the PL in 1L MoS2 is more than 100 times greater than its PL intensity in water. The molecular anion is the key factor, as the TFSI- ion facilitates the oxidation of MoS2. This anionic effect is the additional factor needed to modulate the optoelectronic properties of 2D semiconductors in aqueous media. The proposed idea could have potential applications for biochemical sensors in aqueous situations.

6.
ACS Appl Mater Interfaces ; 14(6): 8163-8170, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35107263

RESUMO

Carrier modulation in transition-metal dichalcogenides (TMDCs) is of importance for applying electronic devices to tune their transport properties and controlling phases, including metallic to superconductivity. Although the surface charge transfer doping method has shown a strong modulation ability of the electronic structures in TMDCs and a degenerately doped state has been proposed, the details of the electronic states have not been elucidated, and this transport behavior should show a considerable thickness dependence in TMDCs. In this study, we characterize the metallic transport behavior in the monolayer and multilayer MoS2 under surface charge transfer doping with a strong electron dopant, benzyl viologen (BV) molecules. The metallic behavior transforms to an insulative state under a negative gate voltage. Consequently, metal-insulator transition (MIT) was observed in both monolayer and multilayer MoS2 correlating with the critical conductivity of order e2/h. In the multilayer case, the BV molecules strongly modulated the topmost surface layer in the bulk MoS2; the transfer characteristics suggested a crossover from a heterogeneously doped state with a doped topmost layer to doping in the deep layers caused by the variation in the gate voltage. The findings of this work will be useful for understanding the device characteristics of thin-layered materials and for applying them to the controlling phases via carrier modulation.

7.
Nanotechnology ; 33(7)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34731834

RESUMO

Graphene nanoribbon (GNR)-based materials are a promising device material because of their potential high carrier mobility and atomically thin structure. Various approaches have been reported for preparing the GNR-based materials, from bottom-up chemical synthetic procedures to top-down fabrication techniques using lithography of graphene. However, it is still difficult to prepare a large-scale GNR-based material. Here, we develop a procedure to prepare a large-scale GNR network using networked single-layer inorganic nanowires. Vanadium pentoxide (V2O5) nanowires were assembled on graphene with an interfacial layer of a cationic polymer via electrostatic interaction. A large-scale nanowire network can be prepared on graphene and is stable enough for applying an oxygen plasma. Using plasma etching, a networked graphene structure can be generated. Removing the nanowires results in a networked flat structure whose both surface morphology and Raman spectrum indicate a GNR networked structure. The field-effect device indicates the semiconducting character of the GNR networked structure. This work would be useful for fabricating a large-scale GNR-based material as a platform for GNR junctions for physics and electronic circuits.

8.
ACS Appl Mater Interfaces ; 13(21): 25280-25289, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34011141

RESUMO

Due to the direct band gap nature, extensive studies have been conducted to improve the optical behavior in monolayer transition metal dichalcogenides (TMDCs) with a formula of MX2 (M = Mo, W; X = S, Se, Te). One of the strongest modulating agents of optical behavior is a molecular superacid treatment; however, the chemical event has not been unveiled. Also, the engineering protocol for keeping the treatment is immature. In this work, we systematically study the superacid treatment procedures on monolayer molybdenum disulfide (MoS2) and propose that the interaction, a hydrophilic interaction, between the superacid molecule and MoS2 surface would be critical. As a result of the interaction, the superacid molecules spontaneously form an acidic layer with the thickness of several nanometers on the surface. The power-dependent photoluminescence (PL) measurement indicates the edge of MoS2 flake is more effective and electronically modulated by the treatment. By understanding the superacid nanolayer formation by the treatment, we succeeded in maintaining the ultrastrong PL in the superacid-treated MoS2 for more than 30 days in the ambient air by encapsulation with transparent organic polymers. This study advances the understanding and designing applications of strong luminescent properties in the superacid-treated TMDCs and paves the way toward engineering exciton dynamics and an experimental platform for treating multibody states.

9.
Inorg Chem ; 60(8): 5436-5441, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33830746

RESUMO

Coordination polymers with metal-sulfur (M-S) bonds in their nodes have interesting optical properties and can be used as photocatalysts for water splitting. A wide range of inorganic-organic hybrid materials with M-S bonds have been prepared in recent years. However, there is a dearth of structural information because of their low crystallinity, which has hampered the understanding of their underlying chemistry and physics. Thus, we conducted a structural study of a novel, highly crystalline coordination polymer with M-S bonds. Theoretical calculations were performed to elucidate its photoconductivity mechanism. The photoconductive, three-dimensional coordination polymer [Pb(tadt)]n (denoted as KGF-9; tadt = 1,3,4-thiadiazole-2,5-dithiolate) was synthesized and confirmed to have a three-dimensional structure containing a two-dimensional Pb-S framework by single-crystal X-ray diffraction. We also performed diffuse-reflectance ultraviolet-visible-near-infrared spectroscopy, time-resolved microwave conductivity, and photoelectron yield spectroscopy measurements on the bulk powder samples, as well as first-principles calculations. Additionally, direct-current photoconductivity measurements were conducted on a single-crystal sample.

10.
ACS Appl Mater Interfaces ; 12(32): 36496-36504, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32635713

RESUMO

To advance the development of atomically thin optoelectronics using two-dimensional (2D) materials, engineering strong luminescence with a physicochemical basis is crucial. Semiconducting monolayer transition-metal dichalcogenides (TMDCs) are candidates for this, but their quantum yield (QY) is known to be poor. Recently, a molecular superacid treatment of bis(trifluoromethane)sulfonimide (TFSI) generated unambiguously bright monolayer TMDCs and a high QY. However, this method is highly dependent on the processing conditions and therefore has not been generalized. Here, we shed light on environmental factors to activate the photoluminescence (PL) intensity of the TFSI-treated monolayer MoS2, with a factor of more than 2 orders of magnitude greater than the original by photoactivation. The method is useful for both mechanically exfoliated and chemically deposited samples. The existence of photoirradiation larger than the band gap demonstrates enhancement of the PL of MoS2; on the other hand, activation by thermal annealing, as demonstrated in the previous report, is less effective for enhancing the PL intensity. The photoactivated monolayer MoS2 shows a long lifetime of ∼1.35 ns, more than a 30-fold improvement over the original as exfoliated. The consistent realization of the bright monolayer MoS2 reveals that air exposure is an essential factor in the process. TFSI treatment in a N2 environment was not effective for achieving a strong PL, even after the photoactivation. These findings can serve as a basis for engineering the bright atomically thin materials for 2D optoelectronics.

11.
ChemistryOpen ; 8(7): 908-914, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31338274

RESUMO

Transition metal dichalcogenides (TMDCs) have received attention as atomically thin post-silicon semiconducting materials. Tuning the carrier concentrations of the TMDCs is important, but their thin structure requires a non-destructive modulation method. Recently, a surface-charge transfer doping method was developed based on contacting molecules on TMDCs, and the method succeeded in achieving a large modulation of the electronic structures. The successful dopant is a neutral benzyl viologen (BV0); however, the problem remains of how to effectively prepare the BV0 molecules. A reduction process with NaBH4 in water has been proposed as a preparation method, but the NaBH4 simultaneously reacts vigorously with the water. Here, a simple method is developed, in which the reaction vial is placed on a hotplate and a fragment of air-stable metal is used instead of NaBH4 to prepare the BV0 dopant molecules. The prepared BV0 molecules show a strong doping ability in terms of achieving a degenerate situation of a TMDC, MoS2. A key finding in this preparation method is that a convection flow in the vial effectively transports the produced BV0 to a collection solvent. This method is simple and safe and facilitates the tuning of the optoelectronic properties of nanomaterials by the easily-handled dopant molecules.

12.
ACS Appl Mater Interfaces ; 11(17): 15922-15926, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30957480

RESUMO

Modulating the electronic structure of semiconducting materials is critical to developing high-performance electronic and optical devices. Transition metal dichalcogenides (TMDCs) are atomically thin semiconducting materials. However, before they can be used successfully in electronic and optical devices, modulation of their carrier concentration at the nanometer scale must be achieved. Molecular doping has been successful in modulating the carrier concentration; however, the scientific approach for selective and local carrier doping at the nanometer scale is still missing. Here, we demonstrate a proof-of-concept of modulating the carrier concentration of TMDCs laterally on a scale of around 100 nm using spontaneous pattern formation of an ultrathin film consisting of molecular electron dopants. When the water made contact with the molecular film (∼10 nm), a spontaneous pattern formation was observed on both the monolayer and bulk TMDCs. We revealed that the pattern-formation dynamics and nanoscopic flow rate of the molecules were highly dependent on the thickness of the TMDCs, since the band gap varies based on the number of layers. Analyses of topographic images of the molecular patterns and photoluminescence spectra of the TMDCs indicated that the spontaneously patterned molecular films induced a local carrier doping. Our results demonstrate a spontaneous formation of a mosaic electronic structure. This work is useful for making tiny-scale electronic junctions on TMDCs and semiconducting materials to make numerous p/n junctions simultaneously for optoelectronic devices.

13.
Acc Chem Res ; 52(3): 523-533, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30767497

RESUMO

Wearable sensors play a crucial role in realizing personalized medicine, as they can continuously collect data from the human body to capture meaningful health status changes in time for preventive intervention. However, motion artifacts and mechanical mismatches between conventional rigid electronic materials and soft skin often lead to substantial sensor errors during epidermal measurement. Because of its unique properties such as high flexibility and conformability, flexible electronics enables a natural interaction between electronics and the human body. In this Account, we summarize our recent studies on the design of flexible electronic devices and systems for physical and chemical monitoring. Material innovation, sensor design, device fabrication, system integration, and human studies employed toward continuous and noninvasive wearable sensing are discussed. A flexible electronic device typically contains several key components, including the substrate, the active layer, and the interface layer. The inorganic-nanomaterials-based active layer (prepared by a physical transfer or solution process) is shown to have good physicochemical properties, electron/hole mobility, and mechanical strength. Flexible electronics based on the printed and transferred active materials has shown great promise for physical sensing. For example, integrating a nanowire transistor array for the active matrix and a conductive pressure-sensitive rubber enables tactile pressure mapping; tactile-pressure-sensitive e-skin and organic light-emitting diodes can be integrated for instantaneous pressure visualization. Such printed sensors have been applied as wearable patches to monitor skin temperature, electrocardiograms, and human activities. In addition, liquid metals could serve as an attractive candidate for flexible electronics because of their excellent conductivity, flexibility, and stretchability. Liquid-metal-enabled electronics (based on liquid-liquid heterojunctions and embedded microchannels) have been utilized to monitor a wide range of physiological parameters (e.g., pulse and temperature). Despite the rapid growth in wearable sensing technologies, there is an urgent need for the development of flexible devices that can capture molecular data from the human body to retrieve more insightful health information. We have developed a wearable and flexible sweat-sensing platform toward real-time multiplexed perspiration analysis. An integrated iontophoresis module on a wearable sweat sensor could enable autonomous and programmed sweat extraction. A microfluidics-based sensing system was demonstrated for sweat sampling, sensing, and sweat rate analysis. Roll-to-roll gravure printing allows for mass production of high-performance flexible chemical sensors at low cost. These wearable and flexible sweat sensors have shown great promise in dehydration monitoring, cystic fibrosis diagnosis, drug monitoring, and noninvasive glucose monitoring. Future work in this field should focus on designing robust wearable sensing systems to accurately collect data from the human body and on large-scale human studies to determine how the measured physical and chemical information relates to the individual's specific health conditions. Further research in these directions, along with the large sets of data collected via these wearable and flexible sensing technologies, will have a significant impact on future personalized healthcare.


Assuntos
Eletrônica Médica/instrumentação , Monitorização Fisiológica/instrumentação , Maleabilidade , Dispositivos Eletrônicos Vestíveis , Desenho de Equipamento , Humanos , Fenômenos Fisiológicos da Pele , Suor/química
14.
ACS Nano ; 12(10): 10123-10129, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30216040

RESUMO

Spontaneous pattern formation is an energetically favorable process and is shown in nature in molecular-scale assembly, biological association, and soft material organizations. The opposite regime, the artificial process, which is widely applied to the fabrication of semiconducting devices, such as lithographic techniques, requires enormous amounts of energy. Here, we propose a concept of tuning the properties of semiconducting MoS2 and WSe2 devices using the spontaneous pattern formation of adjacent molecular films. The film used was a 10 nm thick ultrathin film of a molecular electron dopant, which exhibited spontaneous pattern formation and dynamically transformed the morphology of tiny holes, a network, a maze, and dots on substrates, including SiO2, MoS2, and WSe2. These patterns were exhibited only when the film came in contact with water and was tuned with temperature and time. The specific lengths of the patterns were less than 200 nm, which is sufficiently smaller than the exfoliated ∼10 µm semiconducting MoS2 and WSe2 flakes. The properties of the field-effect devices of MoS2 and WSe2 were found to be modified according to the pattern formation process of the ultrathin molecular film on the device. This concept applies the spontaneous patterning phenomena shown in nature to the fabrication and optimization of electronic devices by using molecular films and their responses to the external environment.

15.
Langmuir ; 34(35): 10243-10249, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30099877

RESUMO

Monolayer molybdenum disulfide (MoS2) is an atomically thin semiconducting material with a direct band gap. This physical property is attributable to atomically thin optical devices such as sensors, light-emitting devices, and photovoltaic cells. Recently, a near-unity photoluminescence (PL) quantum yield of a monolayer MoS2 was demonstrated via a treatment with a molecular acid, bis(trifluoromethane)sulfonimide (TFSI); however, the mechanism still remains a mystery. Here, we work on PL enhancement of monolayer MoS2 by treatment of Brønsted acids (TFSI and sulfuric acid (H2SO4)) to identify the importance of the protonated environment. In TFSI as an acid, different solvents-1,2-dichloroethane (DCE), acetonitrile, and water-were studied, as they show quite different acidity in solution. All of the solvents showed PL enhancement, and the highest was observed in DCE. This behavior in DCE would be due to the higher acidity than others have. Acids from different anions can also be studied in water as a common solvent. Both TFSI and H2SO4 showed similar PL enhancement (∼4-8 enhancement) at the same proton concentration, indicating that the proton is a key factor to enhance the PL intensity. Finally, we considered another cation, Li+ from Li2SO4, instead of H2SO4, in water. Although Li and H atoms showed similar binding energy on MoS2 from theoretical calculations, Li2SO4 treatment showed little PL enhancement; only coexisting H2SO4 reproduced the enhancement. This study demonstrated the importance of a protonated environment to increase the PL intensity of monolayer MoS2. The study will lead to a solution to achieve high optical quality and to implementation for atomically thin optical devices.

16.
Nano Lett ; 17(9): 5356-5360, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28814079

RESUMO

Understanding edge effects and quantifying their impact on the carrier properties of two-dimensional (2D) semiconductors is an essential step toward utilizing this material for high performance electronic and optoelectronic devices. WS2 monolayers patterned into disks of varying diameters are used to experimentally explore the influence of edges on the material's optical properties. Carrier lifetime measurements show a decrease in the effective lifetime, τeffective, as a function of decreasing diameter, suggesting that the edges are active sites for carrier recombination. Accordingly, we introduce a metric called edge recombination velocity (ERV) to characterize the impact of 2D material edges on nonradiative carrier recombination. The unpassivated WS2 monolayer disks yield an ERV ∼ 4 × 104 cm/s. This work quantifies the nonradiative recombination edge effects in monolayer semiconductors, while simultaneously establishing a practical characterization approach that can be used to experimentally explore edge passivation methods for 2D materials.

17.
ACS Appl Mater Interfaces ; 9(24): 20648-20655, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28548483

RESUMO

A major challenge in transistor technology scaling is the formation of controlled ultrashallow junctions with nanometer-scale thickness and high spatial uniformity. Monolayer doping (MLD) is an efficient method to form such nanoscale junctions, where the self-limiting nature of semiconductor surfaces is utilized to form adsorbed monolayers of dopant-containing molecules followed by rapid thermal annealing (RTA) to diffuse the dopants to a desired depth. Unlike ion implantation, the process does not induce crystal damage, thus making it highly attractive for nanoscale transistor processing. To date, reported MLD processes have relied on solution processing for monolayer formation. Gas-phase processing, however, benefits from higher intra- and interwafer uniformity and conformal coverage of 3D structures and is more desirable for manufacturing. In this regard, we report a new approach for MLD in silicon and germanium using gas-phase monolayer formation. We call this technology gas-phase monolayer doping (GP-MLD). This method relies on sequential pulse-purge cycles of gas-phase dopant-containing molecules to form a boron- or phosphorus-containing monolayer on a target semiconductor surface. Here, we show the feasibility of our approach through the formation of ultrashallow B- and P-doped junctions on Si and Ge surfaces. The mechanism of adsorption is characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Sub-5 nm junction depths with high dopant dose are obtained as characterized by secondary ion mass spectrometry and sheet resistance measurements. Additionally, we demonstrate that area selectivity can be achieved via lithographic patterning of the monolayer dopants before the diffusion step. The results demonstrate the versatility of the GP-MLD approach for formation of controlled and ultrashallow junctions.

18.
Sci Adv ; 3(3): e1602557, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28378017

RESUMO

There is great interest in developing a low-power gas sensing technology that can sensitively and selectively quantify the chemical composition of a target atmosphere. Nanomaterials have emerged as extremely promising candidates for this technology due to their inherent low-dimensional nature and high surface-to-volume ratio. Among these, nanoscale silicon is of great interest because pristine silicon is largely inert on its own in the context of gas sensing, unless functionalized with an appropriate gas-sensitive material. We report a chemical-sensitive field-effect transistor (CS-FET) platform based on 3.5-nm-thin silicon channel transistors. Using industry-compatible processing techniques, the conventional electrically active gate stack is replaced by an ultrathin chemical-sensitive layer that is electrically nonconducting and coupled to the 3.5-nm-thin silicon channel. We demonstrate a low-power, sensitive, and selective multiplexed gas sensing technology using this platform by detecting H2S, H2, and NO2 at room temperature for environment, health, and safety in the oil and gas industry, offering significant advantages over existing technology. Moreover, the system described here can be readily integrated with mobile electronics for distributed sensor networks in environmental pollution mapping and personal air-quality monitors.

19.
ACS Appl Mater Interfaces ; 8(36): 24205-11, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27553365

RESUMO

The reduction of parasitic recombination processes commonly occurring within the silicon crystal and at its surfaces is of primary importance in crystalline silicon devices, particularly in photovoltaics. Here we explore a simple, room temperature treatment, involving a nonaqueous solution of the superacid bis(trifluoromethane)sulfonimide, to temporarily deactivate recombination centers at the surface. We show that this treatment leads to a significant enhancement in optoelectronic properties of the silicon wafer, attaining a level of surface passivation in line with state-of-the-art dielectric passivation films. Finally, we demonstrate its advantage as a bulk lifetime and process cleanliness monitor, establishing its compatibility with large area photoluminescence imaging in the process.

20.
Nano Lett ; 16(7): 4047-53, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27322506

RESUMO

Molybdenum disulfide (MoS2) has been widely examined as a catalyst containing no precious metals for the hydrogen evolution reaction (HER); however, these examinations have utilized synthesized MoS2 because the pristine MoS2 mineral is known to be a poor catalyst. The fundamental challenge with pristine MoS2 is the inert HER activity of the predominant (0001) basal surface plane. In order to achieve high HER performance with pristine MoS2, it is essential to activate the basal plane. Here, we report a general thermal process in which the basal plane is texturized to increase the density of HER-active edge sites. This texturization is achieved through a simple thermal annealing procedure in a hydrogen environment, removing sulfur from the MoS2 surface to form edge sites. As a result, the process generates high HER catalytic performance in pristine MoS2 across various morphologies such as the bulk mineral, films composed of micron-scale flakes, and even films of a commercially available spray of nanoflake MoS2. The lowest overpotential (η) observed for these samples was η = 170 mV to obtain 10 mA/cm(2) of HER current density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...