Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559134

RESUMO

The tardigrade Hypsibius exemplaris is an emerging model organism renowned for its ability to survive environmental extremes.1-3 To explore the molecular mechanisms and genetic basis of such extremotolerance, many studies rely on transcriptional profiling4, 5 and RNA interference (RNAi)6 to define molecular targets. Such studies require efficient, accurate, and robust RNA extraction methods; however, obtaining high-quality quantitative levels of RNA from H. exemplaris has been challenging6, 7. Possessing a layer of firm chitinous cuticle, tardigrade tissues are difficult to disrupt by chemical or mechanical means8. Here we present an efficient single-tardigrade, single-tube RNA extraction method (STST) that not only reliably isolates RNA from individual tardigrades but dramatically reduces the time required for extraction. We show that this RNA extraction method yields robust quantities of cDNA and can be used to amplify multiple transcripts by qRT-PCR. To validate the method, we use it to compare dynamic changes in expression of genes encoding two heat-shock-regulated proteins, Heat-Shock Protein 70 ß2 (HSP70ß2) and Heat-Shock Protein 90α (HSP90α) by quantifying their expression levels in heat-exposed and cold-exposed individuals using qRT-PCR across long-term and short-term heat stressors. Our method effectively complements existing bulk RNA extraction methods7, permitting rapid examination of individual tardigrade transcriptional data and quantification of phenotypic variations in expression profiles amongst individuals.

2.
ACS Chem Neurosci ; 14(5): 909-916, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36799505

RESUMO

Visualizing neuronal anatomy often requires labor-intensive immunohistochemistry on fixed and dissected brains. To facilitate rapid anatomical staining in live brains, we used genetically targeted membrane tethers that covalently link fluorescent dyes for in vivo neuronal labeling. We generated a series of extracellularly trafficked small-molecule tethering proteins, HaloTag-CD4 (Kirk et al. Front. Neurosci. 2021, 15, 754027) and SNAPf-CD4, which directly label transgene-expressing cells with commercially available ligand-substituted fluorescent dyes. We created stable transgenic Drosophila reporter lines, which express extracellular HaloTag-CD4 and SNAPf-CD4 with LexA and Gal4 drivers. Expressing these enzymes in live Drosophila brains, we labeled the expression patterns of various Gal4 driver lines recapitulating histological staining in live-brain tissues. Pan-neural expression of SNAPf-CD4 enabled the registration of live brains to an existing template for anatomical comparisons. We predict that these extracellular platforms will not only become a valuable complement to existing anatomical methods but will also prove useful for future genetic targeting of other small-molecule probes, drugs, and actuators.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Neuroanatomia , Corantes Fluorescentes/química , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
3.
Front Neurosci ; 15: 754027, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867164

RESUMO

We combine a chemically-synthesized, voltage-sensitive fluorophore with a genetically encoded, self-labeling enzyme to enable voltage imaging in Drosophila melanogaster. Previously, we showed that a rhodamine voltage reporter (RhoVR) combined with the HaloTag self-labeling enzyme could be used to monitor membrane potential changes from mammalian neurons in culture and brain slice. Here, we apply this hybrid RhoVR-Halo approach in vivo to achieve selective neuron labeling in intact fly brains. We generate a Drosophila UAS-HaloTag reporter line in which the HaloTag enzyme is expressed on the surface of cells. We validate the voltage sensitivity of this new construct in cell culture before driving expression of HaloTag in specific brain neurons in flies. We show that selective labeling of synapses, cells, and brain regions can be achieved with RhoVR-Halo in either larval neuromuscular junction (NMJ) or in whole adult brains. Finally, we validate the voltage sensitivity of RhoVR-Halo in fly tissue via dual-electrode/imaging at the NMJ, show the efficacy of this approach for measuring synaptic excitatory post-synaptic potentials (EPSPs) in muscle cells, and perform voltage imaging of carbachol-evoked depolarization and osmolarity-evoked hyperpolarization in projection neurons and in interoceptive subesophageal zone neurons in fly brain explants following in vivo labeling. We envision the turn-on response to depolarizations, fast response kinetics, and two-photon compatibility of chemical indicators, coupled with the cellular and synaptic specificity of genetically-encoded enzymes, will make RhoVR-Halo a powerful complement to neurobiological imaging in Drosophila.

4.
Curr Protoc ; 1(3): e48, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33760396

RESUMO

Accurately mapping changes in cellular membrane potential across large groups of neurons is crucial for understanding the organization and maintenance of neural circuits. Measuring cellular voltage changes by optical means allows greater spatial resolution than traditional electrophysiology methods and is adaptable to high-throughput imaging experiments. VoltageFluors, a class of voltage-sensitive dyes, have recently been used to optically study the spontaneous activity of many neurons simultaneously in dissociated culture. VoltageFluors are particularly useful for experiments investigating differences in excitability and connectivity between neurons at different stages of development and in different disease models. The protocols in this article describe general procedures for preparing dissociated cultures, imaging spontaneous activity in dissociated cultures with VoltageFluors, and analyzing optical spontaneous activity data. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of dissociated rat hippocampal or cortical cultures Alternate Protocol: Preparation of microisland dissociated cultures Basic Protocol 2: Imaging of spontaneous activity in dissociated cultures using voltage-sensitive dyes Basic Protocol 3: Analysis of spontaneous activity imaging data.


Assuntos
Corantes Fluorescentes , Neurônios , Animais , Diagnóstico por Imagem , Hipocampo , Ratos
5.
Methods Enzymol ; 640: 185-204, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32560798

RESUMO

Voltage imaging in living cells offers the tantalizing possibility of combining the temporal resolution of electrode-based methods with the spatial resolution of imaging techniques. Our lab has been developing voltage-sensitive fluorophores, or VoltageFluors, that respond to changes in cellular and neuronal membrane potential via a photoinduced electron transfer (PeT)-based mechanism. This unique mechanism enables both the fast response kinetics and high sensitivity required to record action potentials in single trials, across multiple cells without the need for stimuli-triggered averaging. In this chapter, we present a methodology for imaging membrane potential dynamics from dozens of neurons simultaneously in vitro. Using simple, commercially available cameras, illumination sources, and microscope optics in combination with the far-red synthetic voltage-sensitive fluorophore BeRST-1 (Berkeley Red Sensor of Transmembrane potential) provides a readily applied method for monitoring neuronal activity in cultured neurons. We discuss different types of voltage-sensitive dyes, considerations for selecting imaging modalities, and outline procedures for the culture of rat hippocampal neurons and performing voltage imaging experiments with these samples. Finally, we provide an example of how changes to the metabolic input to cultured hippocampal neurons can alter their activity profile.


Assuntos
Corantes Fluorescentes , Neurônios , Potenciais de Ação , Animais , Hipocampo , Potenciais da Membrana , Ratos
6.
Sci Adv ; 5(6): eaaw6404, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31249873

RESUMO

The incidence of Alzheimer's disease (AD), which is characterized by progressive cognitive decline that correlates with the spread of tau protein aggregation in the cortical mantle, is strongly age-related. It could be that age predisposes the brain for tau misfolding and supports the propagation of tau pathology. We tested this hypothesis using an experimental setup that allowed for exploration of age-related factors of tau spread and regional vulnerability. We virally expressed human tau locally in entorhinal cortex (EC) neurons of young or old mice and monitored the cell-to-cell tau protein spread by immunolabeling. Old animals showed more tau spreading in the hippocampus and adjacent cortical areas and accumulated more misfolded tau in EC neurons. No misfolding, at any age, was observed in the striatum, a brain region mostly unaffected by tangles. Age and brain region dependent tau spreading and misfolding likely contribute to the profound age-related risk for sporadic AD.


Assuntos
Encéfalo/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Progressão da Doença , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo
7.
EMBO J ; 34(24): 3028-41, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26538322

RESUMO

In Alzheimer's disease and tauopathies, tau protein aggregates into neurofibrillary tangles that progressively spread to synaptically connected brain regions. A prion-like mechanism has been suggested: misfolded tau propagating through the brain seeds neurotoxic aggregation of soluble tau in recipient neurons. We use transgenic mice and viral tau expression to test the hypotheses that trans-synaptic tau propagation, aggregation, and toxicity rely on the presence of endogenous soluble tau. Surprisingly, mice expressing human P301Ltau in the entorhinal cortex showed equivalent tau propagation and accumulation in recipient neurons even in the absence of endogenous tau. We then tested whether the lack of endogenous tau protects against misfolded tau aggregation and toxicity, a second prion model paradigm for tau, using P301Ltau-overexpressing mice with severe tangle pathology and neurodegeneration. Crossed onto tau-null background, these mice had similar tangle numbers but were protected against neurotoxicity. Therefore, misfolded tau can propagate across neural systems without requisite templated misfolding, but the absence of endogenous tau markedly blunts toxicity. These results show that tau does not strictly classify as a prion protein.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas tau/genética , Animais , Células Cultivadas , Córtex Entorrinal/citologia , Córtex Entorrinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Neurônios/metabolismo , Proteínas tau/deficiência , Proteínas tau/metabolismo
8.
PLoS One ; 9(11): e111899, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25390692

RESUMO

Amyloid beta (Abeta) 1-42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1) protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological effects of Abeta oligomers in AD and is a tractable target for small molecule disease-modifying therapeutics.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/química , Proteínas de Membrana/metabolismo , Fragmentos de Peptídeos/química , Receptores de Progesterona/metabolismo , Sinapses/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Animais , Autorradiografia , Encéfalo/metabolismo , Membrana Celular/metabolismo , Cognição/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Humanos , Proteínas de Membrana/genética , Camundongos , Neurônios/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Progesterona/genética , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...