Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
PLoS One ; 17(1): e0260755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34986155

RESUMO

Nearly all annual blooms of the toxic dinoflagellate Karenia brevis (K. brevis) pose a serious threat to coastal Southwest Florida. These blooms discolor water, kill fish and marine mammals, contaminate shellfish, cause mild to severe respiratory irritation, and discourage tourism and recreational activities, leading to significant health and economic impacts in affected communities. Despite these issues, we still lack standard measures suitable for assessing bloom severity or for evaluating the efficacy of modeling efforts simulating bloom initiation and intensity. In this study, historical cell count observations along the southwest Florida shoreline from 1953 to 2019 were used to develop monthly and annual bloom severity indices (BSI). Similarly, respiratory irritation observations routinely reported in Sarasota and Manatee Counties from 2006 to 2019 were used to construct a respiratory irritation index (RI). Both BSI and RI consider spatial extent and temporal evolution of the bloom, and can be updated routinely and used as objective criteria to aid future socioeconomic and scientific studies of K. brevis. These indices can also be used to help managers and decision makers both evaluate the risks along the coast during events and design systems to better respond to and mitigate bloom impacts. Before 1995, sampling was done largely in response to reports of discolored water, fish kills, or respiratory irritation. During this timeframe, lack of sampling during the fall, when blooms typically occur, generally coincided with periods of more frequent-than-usual offshore winds. Consequently, some blooms may have been undetected or under-sampled. As a result, the BSIs before 1995 were likely underestimated and cannot be viewed as accurately as those after 1995. Anomalies in the frequency of onshore wind can also largely account for the discrepancies between BSI and RI during the period from 2006 to 2019. These findings highlighted the importance of onshore wind anomalies when predicting respiratory irritation impacts along beaches.


Assuntos
Dinoflagellida/crescimento & desenvolvimento , Previsões/métodos , Proliferação Nociva de Algas/fisiologia , Dinoflagellida/patogenicidade , Florida , Humanos , Toxinas Marinhas/análise , Sistema Respiratório , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/etiologia
2.
Front Public Health ; 8: 578463, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178663

RESUMO

The Gulf of Mexico (GoM) region is prone to disasters, including recurrent oil spills, hurricanes, floods, industrial accidents, harmful algal blooms, and the current COVID-19 pandemic. The GoM and other regions of the U.S. lack sufficient baseline health information to identify, attribute, mitigate, and facilitate prevention of major health effects of disasters. Developing capacity to assess adverse human health consequences of future disasters requires establishment of a comprehensive, sustained community health observing system, similar to the extensive and well-established environmental observing systems. We propose a system that combines six levels of health data domains, beginning with three existing, national surveys and studies plus three new nested, longitudinal cohort studies. The latter are the unique and most important parts of the system and are focused on the coastal regions of the five GoM States. A statistically representative sample of participants is proposed for the new cohort studies, stratified to ensure proportional inclusion of urban and rural populations and with additional recruitment as necessary to enroll participants from particularly vulnerable or under-represented groups. Secondary data sources such as syndromic surveillance systems, electronic health records, national community surveys, environmental exposure databases, social media, and remote sensing will inform and augment the collection of primary data. Primary data sources will include participant-provided information via questionnaires, clinical measures of mental and physical health, acquisition of biological specimens, and wearable health monitoring devices. A suite of biomarkers may be derived from biological specimens for use in health assessments, including calculation of allostatic load, a measure of cumulative stress. The framework also addresses data management and sharing, participant retention, and system governance. The observing system is designed to continue indefinitely to ensure that essential pre-, during-, and post-disaster health data are collected and maintained. It could also provide a model/vehicle for effective health observation related to infectious disease pandemics such as COVID-19. To our knowledge, there is no comprehensive, disaster-focused health observing system such as the one proposed here currently in existence or planned elsewhere. Significant strengths of the GoM Community Health Observing System (CHOS) are its longitudinal cohorts and ability to adapt rapidly as needs arise and new technologies develop.


Assuntos
COVID-19 , Desastres , Golfo do México , Humanos , Estudos Longitudinais , Pandemias , Saúde Pública , SARS-CoV-2
3.
PLoS One ; 14(6): e0218489, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31220134

RESUMO

Blooms of the toxic microalga Karenia brevis occur seasonally in Florida, Texas and other portions of the Gulf of Mexico. Brevetoxins produced during Karenia blooms can cause neurotoxic shellfish poisoning in humans, massive fish kills, and the death of marine mammals and birds. Brevetoxin-containing aerosols are an additional problem, having a severe impact on beachgoers, triggering coughing, eye and throat irritation in healthy individuals, and more serious respiratory distress in those with asthma or other breathing disorders. The blooms and associated aerosol impacts are patchy in nature, often affecting one beach but having no impact on an adjacent beach. To provide timely information to visitors about which beaches are low-risk, we developed HABscope; a low cost (~$400) microscope system that can be used in the field by citizen scientists with cell phones to enumerate K. brevis cell concentrations in the water along each beach. The HABscope system operates by capturing short videos of collected water samples and uploading them to a central server for rapid enumeration of K. brevis cells using calibrated recognition software. The HABscope has a detection threshold of about 100,000 cells, which is the point when respiratory risk becomes evident. Higher concentrations are reliably estimated up to 10 million cells L-1. When deployed by volunteer citizen scientists, the HABscope consistently distinguished low, medium, and high concentrations of cells in the water. The volunteers were able to collect data on most days during a severe bloom. This indicates that the HABscope can provide an effective capability to significantly increase the sampling coverage during Karenia brevis blooms.


Assuntos
Asma/prevenção & controle , Proliferação Nociva de Algas , Toxinas Marinhas/efeitos adversos , Oxocinas/efeitos adversos , Intoxicação por Frutos do Mar/epidemiologia , Aerossóis/efeitos adversos , Asma/epidemiologia , Dinoflagellida , Florida/epidemiologia , Golfo do México/epidemiologia , Humanos , Microalgas/crescimento & desenvolvimento , Microalgas/patogenicidade , Intoxicação por Frutos do Mar/prevenção & controle , Texas/epidemiologia
4.
Harmful Algae ; 82: 73-81, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30928012

RESUMO

Human respiratory and gastrointestinal illnesses can result from exposures to brevetoxins originating from coastal Florida red tide blooms, comprising the marine alga Karenia brevis (K. brevis). Only limited research on the extent of human health risks and illness costs due to K. brevis blooms has been undertaken to date. Because brevetoxins are known neurotoxins that are able to cross the blood-brain barrier, it is possible that exposure to brevetoxins may be associated with neurological illnesses. This study explored whether K. brevis blooms may be associated with increases in the numbers of emergency department visits for neurological illness. An exposure-response framework was applied to test the effects of K. brevis blooms on human health, using secondary data from diverse sources. After controlling for resident population, seasonal and annual effects, significant increases in emergency department visits were found specifically for headache (ICD-9 784.0) as a primary diagnosis during proximate coastal K. brevis blooms. In particular, an increased risk for older residents (≥55 years) was identified in the coastal communities of six southwest Florida counties during K. brevis bloom events. The incidence of headache associated with K. brevis blooms showed a small but increasing association with K. brevis cell densities. Rough estimates of the costs of this illness were developed for hypothetical bloom occurrences.


Assuntos
Dinoflagellida , Proliferação Nociva de Algas , Humanos , Neurotoxinas
5.
Appl Environ Educ Commun ; 14(3): 167-177, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27087790

RESUMO

This study investigated newspaper coverage of Florida red tide blooms in four metropolitan areas of Southwest Florida during a 25-year period, 1987-2012. We focused on how journalists framed red tide stories with respect to environmental risk, health risk, and economic risk. We determined risk to be a key factor in this news coverage, being an aspect of coverage of red tide itself in terms of environmental risk, tourism risk, and public health risk. The study found that red tide news coverage is most often framed as an environmental story.

6.
Sci Total Environ ; 493: 898-909, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25003583

RESUMO

To mitigate the damages of natural hazards, policy responses can be beneficial only if they are effective. Using a self-administered survey approach, this paper focuses on the adherence to local fertilizer ordinances (i.e., county or municipal rules regulating the application of fertilizer to private lawns or facilities such as golf courses) implemented in jurisdictions along the Southwest Florida coast in response to hazardous blooms of Florida red tides (Karenia brevis). These ordinances play a role in the context of evolving programs of water pollution control at federal, state, water basin, and local levels. With respect to policy effectiveness, while the strength of physical linkages is of critical importance, the extent to which humans affected are aware of and adhere to the relevant rules, is equally critical. We sought to understand the public's depth of understanding about the rationales for local fertilizer ordinances. Respondents in Sarasota, Florida, were asked about their fertilizer practices in an area that has experienced several major blooms of Florida red tides over the past two decades. A highly educated, older population of 305 residents and "snowbirds" reported relatively little knowledge about a local fertilizer ordinance, its purpose, or whether it would change the frequency, size, or duration of red tides. This finding held true even among subpopulations that were expected to have more interest in or to be more knowledgeable about harmful algal blooms. In the face of uncertain science and environmental outcomes, and with individual motivations at odds with evolving public policies, the effectiveness of local community efforts to decrease the impacts of red tides may be compromised. Targeted social-science research on human perceptions about the risks of Florida red tides and education about the rationales for potential policy responses are warranted.


Assuntos
Política Ambiental , Fertilizantes , Fidelidade a Diretrizes , Proliferação Nociva de Algas , Poluição da Água/prevenção & controle , Florida , Humanos , Poluição da Água/legislação & jurisprudência
7.
Environ Int ; 68: 144-53, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24727069

RESUMO

Human respiratory and digestive illnesses can be caused by exposures to brevetoxins from blooms of the marine alga Karenia brevis, also known as Florida red tide (FRT). K. brevis requires macro-nutrients to grow; although the sources of these nutrients have not been resolved completely, they are thought to originate both naturally and anthropogenically. The latter sources comprise atmospheric depositions, industrial effluents, land runoffs, or submerged groundwater discharges. To date, there has been only limited research on the extent of human health risks and economic impacts due to FRT. We hypothesized that FRT blooms were associated with increases in the numbers of emergency room visits and hospital inpatient admissions for both respiratory and digestive illnesses. We sought to estimate these relationships and to calculate the costs of associated adverse health impacts. We developed environmental exposure-response models to test the effects of FRT blooms on human health, using data from diverse sources. We estimated the FRT bloom-associated illness costs, using extant data and parameters from the literature. When controlling for resident population, a proxy for tourism, and seasonal and annual effects, we found that increases in respiratory and digestive illnesses can be explained by FRT blooms. Specifically, FRT blooms were associated with human health and economic effects in older cohorts (≥55 years of age) in six southwest Florida counties. Annual costs of illness ranged from $60,000 to $700,000 annually, but these costs could exceed $1.0 million per year for severe, long-lasting FRT blooms, such as the one that occurred during 2005. Assuming that the average annual illness costs of FRT blooms persist into the future, using a discount rate of 3%, the capitalized costs of future illnesses would range between $2 and 24 million.


Assuntos
Dinoflagellida/química , Exposição Ambiental , Toxinas Marinhas/toxicidade , Oxocinas/toxicidade , Idoso , Efeitos Psicossociais da Doença , Feminino , Florida , Gastroenteropatias/induzido quimicamente , Gastroenteropatias/economia , Gastroenteropatias/patologia , Humanos , Exposição por Inalação , Pneumopatias/induzido quimicamente , Pneumopatias/economia , Pneumopatias/patologia , Masculino , Pessoa de Meia-Idade
8.
Harmful Algae ; 32: 27-32, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24563634

RESUMO

Harmful algal blooms of the toxic dinoflagellate, Karenia brevis, occur throughout the Gulf of Mexico. Recent research efforts sponsored by the National Institute of Environmental Health Sciences (NIEHS) and others found that Florida red tide causes both acute and possibly chronic health effects from the toxic aerosols. Florida red tide also demonstrated significant social and economic impacts to both coastal residents and visitors. In conjunction with the research, persistent outreach efforts were conducted over the 11 year period. The goal of this project was to assess potential needs for tailored messaging needed among different red tide information user groups. Survey participants included 303 local residents, both with asthma and without, and 'snowbirds (seasonal residents that reside in the Sarasota area for more than 3 months but less than 6 months/year), also both with asthma and without. The questionnaire assessed Florida red tide knowledge and risk perception regarding Florida red tide using items drawn from two previously published surveys to allow comparison. Our results reveal that overall knowledge of Florida red tide has not changed. We found that knowledge was consistent across our selected groups and also did not vary by age, gender and education level. However, knowledge regarding consumption of seafood during Florida red tide has declined. Risk perception increased significantly for people who have asthma. Individuals responsible for public health communication regarding Florida red tide and human health concerns need to continue to pursue more effective outreach messages and delivery methods.

9.
Harmful Algae ; 17: 1-5, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22712002

RESUMO

Over the years, numerous outreach strategies by the science community, such as FAQ cards and website information, have been used to explain blooms of the toxic dinoflagellate, Karenia brevis that occur annually off the west coast of Florida to the impacted communities. Many state and federal agencies have turned to funded research groups for assistance in the development and testing of environmental outreach products. In the case of Florida red tide, the Fish and Wildlife Research Institute/Mote Marine Laboratory (MML) Cooperative Red Tide Agreement allowed MML to initiate a project aimed at developing innovative outreach products about Florida red tide. This project, which we coined "The Art of Red Tide Science," consisted of a team effort between scientists from MML and students from Ringling College of Art and Design. This successful outreach project focused on Florida red tide can be used as a model to develop similar outreach projects for equally complex ecological issues.

10.
Harmful Algae ; 10(6): 744-748, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22053149

RESUMO

Having demonstrated significant and persistent adverse changes in pulmonary function for asthmatics after 1 hour exposure to brevetoxins in Florida red tide (Karenia brevis bloom) aerosols, we assessed the possible longer term health effects in asthmatics from intermittent environmental exposure to brevetoxins over 7 years. 125 asthmatic subjects were assessed for their pulmonary function and reported symptoms before and after 1 hour of environmental exposure to Florida red tide aerosols for upto 11 studies over seven years. As a group, the asthmatics came to the studies with normal standardized percent predicted pulmonary function values. The 38 asthmatics who participated in only one exposure study were more reactive compared to the 36 asthmatics who participated in ≥4 exposure studies. The 36 asthmatics participating in ≥4 exposure studies demonstrated no significant change in their standardized percent predicted pre-exposure pulmonary function over the 7 years of the study. These results indicate that stable asthmatics living in areas with intermittent Florida red tides do not exhibit chronic respiratory effects from intermittent environmental exposure to aerosolized brevetoxins over a 7 year period.

11.
Harmful Algae ; 10(4): 374-380, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21532966

RESUMO

To enhance information sharing and garner increased support from the public for scientific research, funding agencies now typically require that research groups receiving support convey their work to stakeholders. The National Institute of Environmental Health Sciences-(NIEHS) funded Aerosolized Florida Red Tide P01 research group (Florida Red Tide Research Group) has employed a variety of outreach strategies to meet this requirement. Messages developed from this project began a decade ago and have evolved from basic print material (fliers and posters) to an interactive website, to the use of video and social networking technologies, such as Facebook and Twitter. The group was able to track dissemination of these information products; however, evaluation of their effectiveness presented much larger challenges. The primary lesson learned by the Florida Red Tide Research Group is that the best ways to reach specific stakeholders is to develop unique products or services to address specific stakeholders needs, such as the Beach Conditions Reporting System. Based on the experience of the Group, the most productive messaging products result when scientific community engages potential stakeholders and outreach experts during the very initial phases of a project.

12.
Harmful Algae ; 10(2): 138-143, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21499552

RESUMO

Blooms of the toxic dinoflagellate, Karenia brevis, produce potent neurotoxins in marine aerosols. Recent studies have demonstrated acute changes in both symptoms and pulmonary function in asthmatics after only 1 hour of beach exposure to these aerosols. This study investigated if there were latent and/or sustained effects in asthmatics in the days following the initial beach exposure during periods with and without an active Florida red tide.Symptom data and spirometry data were collected before and after 1 hour of beach exposure. Subjects kept daily symptom diaries and measured their peak flow each morning for 5 days following beach exposure. During non-exposure periods, there were no significant changes in symptoms or pulmonary function either acutely or over 5 days of follow-up. After the beach exposure during an active Florida red tide, subjects had elevated mean symptoms which did not return to the pre-exposure baseline for at least 4 days. The peak flow measurements decreased after the initial beach exposure, decreased further within 24 hours, and continued to be suppressed even after 5 days. Asthmatics may continue to have increased symptoms and delayed respiratory function suppression for several days after 1 hour of exposure to the Florida red tide toxin aerosols.

13.
Harmful Algae ; 10(2): 224-233, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21218152

RESUMO

This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue-one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people.

14.
Harmful Algae ; 9(6): 600-606, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20824108

RESUMO

The west coast of Florida has annual blooms of the toxin-producing dinoflagellate, Karenia brevis with Sarasota, FL considered the epicenter for these blooms. Numerous outreach materials, including Frequently Asked Question (FAQ) cards, exhibits for local museums and aquaria, public beach signs, and numerous websites have been developed to disseminate information to the public about this natural hazard. In addition, during intense onshore blooms, a great deal of media attention, primarily via newspaper (print and web) and television, is focused on red tide. However to date, the only measure of effectiveness of these outreach methods has been counts of the number of people exposed to the information, e.g., visits to a website or number of FAQ cards distributed. No formal assessment has been conducted to determine if these materials meet their goal of informing the public about Florida red tide. Also, although local residents have the opinion that they are very knowledgeable about Florida red tide, this has not been verified empirically. This study addressed these issues by creating and administering an evaluation tool for the assessment of public knowledge about Florida red tide. A focus group of Florida red tide outreach developers assisted in the creation of the evaluation tool. The location of the evaluation was the west coast of Florida, in Sarasota County. The objective was to assess the knowledge of the general public about Florida red tide. This assessment identified gaps in public knowledge regarding Florida red tides and also identified what information sources people want to use to obtain information on Florida red tide. The results from this study can be used to develop more effective outreach materials on Florida red tide.

15.
Harmful Algae ; 9(4): 419-425, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20383268

RESUMO

The marine dinoflagellate, Karenia brevis, is responsible for Florida red tides. Brevetoxins, the neurotoxins produced by K. brevis blooms, can cause fish kills, contaminate shellfish, and lead to respiratory illness in humans. Although several studies have assessed different economic impacts from Florida red tide blooms, no studies to date have considered the impact on beach lifeguard work performance. Sarasota County experiences frequent Florida red tides and staffs lifeguards at its beaches 365 days a year. This study examined lifeguard attendance records during the time periods of March 1 to September 30 in 2004 (no bloom) and March 1 to September 30 in 2005 (bloom). The lifeguard attendance data demonstrated statistically significant absenteeism during a Florida red tide bloom. The potential economic costs resulting from red tide blooms were comprised of both lifeguard absenteeism and presenteeism. Our estimate of the costs of absenteeism due to the 2005 red tide in Sarasota County is about $3,000. On average, the capitalized costs of lifeguard absenteeism in Sarasota County may be on the order of $100,000 at Sarasota County beaches alone. When surveyed, lifeguards reported not only that they experienced adverse health effects of exposure to Florida red tide but also that their attentiveness and abilities to take preventative actions decrease when they worked during a bloom, implying presenteeism effects. The costs of presenteeism, which imply increased risks to beachgoers, arguably could exceed those of absenteeism by an order of magnitude. Due to the lack of data, however, we are unable to provide credible estimates of the costs of presenteeism or the potential increased risks to bathers.

16.
J Occup Environ Hyg ; 7(6): 326-31, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20379895

RESUMO

Florida red tides occur annually in the Gulf of Mexico from blooms of the marine dinoflagellate, Karenia brevis, which produces highly potent natural polyether toxins, brevetoxins. Several epidemiologic studies have demonstrated that human exposure to red tide aerosol could result in increased respiratory symptoms. Environmental monitoring of aerosolized brevetoxins was performed using a high-volume sampler taken hourly at fixed locations on Siesta Beach, Florida. Personal exposure was monitored using personal air samplers and taking nasal swab samples from the subjects who were instructed to spend 1 hr on Sarasota Beach during two sampling periods of an active Florida red tide event in March 2005, and in May 2008 when there was no red tide. Results showed that the aerosolized brevetoxins from the personal sampler were in modest agreement with the environmental concentration taken from a high-volume sampler. Analysis of nasal swab samples for brevetoxins demonstrated 68% positive samples in the March 2005 sampling period when air concentrations of brevetoxins were between 50 to 120 ng/m(3) measured with the high-volume sampler. No swab samples showed detectable levels of brevetoxins in the May 2008 study, when all personal samples were below the limit of detection. However, there were no statistical correlations between the amounts of brevetoxins detected in the swab samples with either the environmental or personal concentration. Results showed that the personal sample might provide an estimate of individual exposure level. Nasal swab samples showed that brevetoxins indeed were inhaled and deposited in the nasal passage during the March 2005 red tide event.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Exposição por Inalação/análise , Toxinas Marinhas/análise , Cavidade Nasal , Oxocinas/análise , Aerossóis/análise , Florida , Proliferação Nociva de Algas , Humanos
17.
Harmful Algae ; 9(1): 82-86, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20161425

RESUMO

Human exposure to brevetoxins during Florida red tide blooms formed by Karenia brevis has been documented to cause acute gastrointestinal, neurologic, and respiratory health effects.. Traditionally, the routes of brevetoxin exposure have been through the consumption of contaminated bivalve shellfish and the inhalation of contaminated aerosols. However, recent studies using more sensitive methods have demonstrated the presence of brevetoxins in many components of the aquatic food web which may indicate potential alternative routes for human exposure.This study examined whether the presence of a Florida red tide bloom affected the rates of admission for a gastrointestinal diagnosis to a hospital emergency room in Sarasota, FL. The rates of gastrointestinal diagnoses admissions were compared for a 3-month time period in 2001 when Florida red tide bloom was present onshore to the same 3-month period in 2002 when no Florida red tide bloom occurred. A significant 40% increase in the total number of gastrointestinal emergency room admissions for the Florida red tide bloom period was found compared to the non red tide period.These results suggest that the healthcare community may experience a significant and unrecognized impact from patients needing emergency medical care for gastrointestinal illnesses during Florida red tide blooms. Thus, additional studies characterizing the potential sources of exposure to the toxins, as well as the dose/effect relationship of brevetoxin exposure, should be undertaken.

18.
Harmful Algae ; 9(2): 186-189, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20161504

RESUMO

Florida red tides, an annual event off the west coast of Florida, are caused by the toxic dinoflagellate, Karenia brevis. K. brevis produces a suite of potent neurotoxins, brevetoxins, which kill fish, sea birds, and marine mammals, as well as sickening humans who consume contaminated shellfish. These toxins become part of the marine aerosol, and can also be inhaled by humans and other animals. Recent studies have demonstrated a significant increase in symptoms and decrease lung function in asthmatics after only one hour of beach exposure during an onshore Florida red tide bloom.This study constructed a transect line placing high volume air samplers to measure brevetoxins at sites beginning at the beach, moving approximately 6.4 km inland. One non-exposure and 2 exposure studies, each of 5 days duration, were conducted. No toxins were measured in the air during the non-exposure period. During the 2 exposure periods, the amount of brevetoxins varied considerably by site and by date. Nevertheless, brevetoxins were measured at least 4.2 kilometers from the beach and/or 1.6 km from the coastal shoreline. Therefore, populations sensitive to brevetoxins (such as asthmatics) need to know that leaving the beach may not discontinue their environmental exposure to brevetoxin aerosols.

19.
Toxicon ; 55(5): 909-21, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19615396

RESUMO

We conducted a study of recreational exposure to microcystins among 81 children and adults planning recreational activities on either of three California reservoirs, two with significant, ongoing blooms of toxin-producing cyanobacteria, including Microcystis aeruginosa (Bloom Lakes), and one without a toxin-producing algal bloom (Control Lake). We analyzed water samples for algal taxonomy, microcystin concentrations, and potential respiratory viruses (adenoviruses and enteroviruses). We measured microcystins in personal air samples, nasal swabs, and blood samples. We interviewed study participants for demographic and health symptoms information. We found highly variable microcystin concentrations in Bloom Lakes (<10 microg/L to >500 microg/L); microcystin was not detected in the Control Lake. We did not detect adenoviruses or enteroviruses in any of the lakes. Low microcystin concentrations were found in personal air samples (<0.1 ng/m(3) [limit of detection]-2.89 ng/m(3)) and nasal swabs (<0.1 ng [limit of detection]-5 ng). Microcystin concentrations in the water-soluble fraction of all plasma samples were below the limit of detection (1.0 microg/L). Our findings indicate that recreational activities in water bodies that experience toxin-producing cyanobacterial blooms can generate aerosolized cyanotoxins, making inhalation a potential route of exposure. Future studies should include collecting nasal swabs to assess upper respiratory tract deposition of toxin-containing aerosols droplets.


Assuntos
Proliferação Nociva de Algas , Microcistinas/efeitos adversos , Microcystis/metabolismo , Recreação/fisiologia , Poluentes Químicos da Água/efeitos adversos , Adolescente , Adulto , Idoso , California , Criança , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Feminino , Água Doce/química , Humanos , Masculino , Microcistinas/análise , Microcystis/classificação , Microcystis/isolamento & purificação , Pessoa de Meia-Idade , Microbiologia da Água , Poluentes Químicos da Água/análise , Adulto Jovem
20.
Environ Health Perspect ; 117(7): 1095-100, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19654919

RESUMO

BACKGROUND: In previous studies we demonstrated statistically significant changes in reported symptoms for lifeguards, general beach goers, and persons with asthma, as well as statistically significant changes in pulmonary function tests (PFTs) in asthmatics, after exposure to brevetoxins in Florida red tide (Karenia brevis bloom) aerosols. OBJECTIVES: In this study we explored the use of different methods of intensive ambient and personal air monitoring to characterize these exposures to predict self-reported health effects in our asthmatic study population. METHODS: We evaluated health effects in 87 subjects with asthma before and after 1 hr of exposure to Florida red tide aerosols and assessed for aerosolized brevetoxin exposure using personal and ambient samplers. RESULTS: After only 1 hr of exposure to Florida red tide aerosols containing brevetoxin concentrations > 57 ng/m(3), asthmatics had statistically significant increases in self-reported respiratory symptoms and total symptom scores. However, we did not see the expected corresponding changes in PFT results. Significant increases in self-reported symptoms were also observed for those not using asthma medication and those living >/= 1 mile from the coast. CONCLUSIONS: These results provide additional evidence of health effects in asthmatics from ambient exposure to aerosols containing very low concentrations of brevetoxins, possibly at the lower threshold for inducing a biologic response (i.e., toxicity). Consistent with the literature describing self-reported symptoms as an accurate measure of asthmatic distress, our results suggest that self-reported symptoms are a valuable measure of the extent of health effects from exposure to aerosolized brevetoxins in asthmatic populations.


Assuntos
Asma/patologia , Exposição por Inalação , Toxinas Marinhas/toxicidade , Oxocinas/toxicidade , Adolescente , Adulto , Aerossóis/toxicidade , Idoso , Ensaio de Imunoadsorção Enzimática , Feminino , Florida , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...