Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Limnol Oceanogr ; 66(6): 2095-2109, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34239169

RESUMO

Hadal trenches represent the deepest part of the ocean and are dynamic depocenters with intensified prokaryotic activity. Here, we explored the distribution and drivers of prokaryotic and viral abundance from the ocean surface and 40 cm into sediments in two hadal trench regions with contrasting surface productivity. In the water column, prokaryotic and viral abundance decreased with water depth before reaching a rather stable level at ~ 4000 m depth at both trench systems, while virus to prokaryote ratios were increasing with depth, presumably reflecting the declining availability of organic material. Prokaryotic and viral abundances in sediments were lower at the adjacent abyssal sites than at the hadal sites and declined exponentially with sediment depth, closely tracking the attenuation of total organic carbon (TOC) content. In contrast, hadal sediment exhibited erratic depth profiles of prokaryotes and viruses with many subsurface peaks. The prokaryotic abundance correlated well to extensive fluctuations in TOC content at centimeter scale, which were likely caused by recurring mass wasting events. Yet while prokaryotic and viral abundances cross correlated well in the abyssal sediments, there was no clear correlation in the hadal sites. The results suggested that dynamic depositional conditions and higher substrate availability result in a high spatial heterogeneity in viral and prokaryotic abundances in hadal sediments in comparison to more stable abyssal settings. We argue that these conditions enhance the relatively importance of viruses for prokaryotic mortality and carbon recycling in hadal settings.

2.
Front Immunol ; 12: 762032, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003074

RESUMO

Uracil arises in cellular DNA by cytosine (C) deamination and erroneous replicative incorporation of deoxyuridine monophosphate opposite adenine. The former generates C → thymine transition mutations if uracil is not removed by uracil-DNA glycosylase (UDG) and replaced by C by the base excision repair (BER) pathway. The primary human UDG is hUNG. During immunoglobulin gene diversification in activated B cells, targeted cytosine deamination by activation-induced cytidine deaminase followed by uracil excision by hUNG is important for class switch recombination (CSR) and somatic hypermutation by providing the substrate for DNA double-strand breaks and mutagenesis, respectively. However, considerable uncertainty remains regarding the mechanisms leading to DNA incision following uracil excision: based on the general BER scheme, apurinic/apyrimidinic (AP) endonuclease (APE1 and/or APE2) is believed to generate the strand break by incising the AP site generated by hUNG. We report here that hUNG may incise the DNA backbone subsequent to uracil excision resulting in a 3´-α,ß-unsaturated aldehyde designated uracil-DNA incision product (UIP), and a 5´-phosphate. The formation of UIP accords with an elimination (E2) reaction where deprotonation of C2´ occurs via the formation of a C1´ enolate intermediate. UIP is removed from the 3´-end by hAPE1. This shows that the first two steps in uracil BER can be performed by hUNG, which might explain the significant residual CSR activity in cells deficient in APE1 and APE2.


Assuntos
DNA/metabolismo , Genes de Imunoglobulinas , Uracila-DNA Glicosidase/metabolismo , Uracila/metabolismo , Humanos
3.
Nucleic Acids Res ; 48(12): 6906-6918, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32459340

RESUMO

The universal L-shaped tertiary structure of tRNAs is maintained with the help of nucleotide modifications within the D- and T-loops, and these modifications are most extensive within hyperthermophilic species. The obligate-commensal Nanoarchaeum equitans and its phylogenetically-distinct host Ignicoccus hospitalis grow physically coupled under identical hyperthermic conditions. We report here two fundamentally different routes by which these archaea modify the key conserved nucleotide U54 within their tRNA T-loops. In N. equitans, this nucleotide is methylated by the S-adenosylmethionine-dependent enzyme NEQ053 to form m5U54, and a recombinant version of this enzyme maintains specificity for U54 in Escherichia coli. In N. equitans, m5U54 is subsequently thiolated to form m5s2U54. In contrast, I. hospitalis isomerizes U54 to pseudouridine prior to methylating its N1-position and thiolating the O4-position of the nucleobase to form the previously uncharacterized nucleotide m1s4Ψ. The methyl and thiol groups in m1s4Ψ and m5s2U are presented within the T-loop in a spatially identical manner that stabilizes the 3'-endo-anti conformation of nucleotide-54, facilitating stacking onto adjacent nucleotides and reverse-Hoogsteen pairing with nucleotide m1A58. Thus, two distinct structurally-equivalent solutions have evolved independently and convergently to maintain the tertiary fold of tRNAs under extreme hyperthermic conditions.


Assuntos
Desulfurococcaceae/genética , Nanoarchaeota/genética , Conformação de Ácido Nucleico , RNA de Transferência/ultraestrutura , Archaea/genética , Archaea/ultraestrutura , Escherichia coli/genética , Metilação , Filogenia , RNA de Transferência/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/ultraestrutura
4.
Artigo em Inglês | MEDLINE | ID: mdl-32229491

RESUMO

Polymyxins are increasingly used as the critical last-resort therapeutic options for multidrug-resistant Gram-negative bacteria. Unfortunately, polymyxin resistance has increased gradually over the past few years. Although studies on polymyxin mechanisms are expanding, systemwide analyses of the underlying mechanism for polymyxin resistance and stress response are still lacking. To understand how Klebsiella pneumoniae adapts to colistin (polymyxin E) pressure, we carried out proteomic analysis of a K. pneumoniae strain cultured with different concentrations of colistin. Our results showed that the proteomic responses to colistin treatment in K. pneumoniae involve several pathways, including (i) gluconeogenesis and the tricarboxylic acid (TCA) cycle, (ii) arginine biosynthesis, (iii) porphyrin and chlorophyll metabolism, and (iv) enterobactin biosynthesis. Interestingly, decreased abundances of class A ß-lactamases, including TEM, SHV-11, and SHV-4, were observed in cells treated with colistin. Moreover, we present comprehensive proteome atlases of paired polymyxin-susceptible and -resistant K. pneumoniae strains. The polymyxin-resistant strain Ci, a mutant of K. pneumoniae ATCC BAA 2146, showed a missense mutation in crrB This crrB mutant, which displayed lipid A modification with 4-amino-4-deoxy-l-arabinose (l-Ara4N) and palmitoylation, showed striking increases in the expression of CrrAB, PmrAB, PhoPQ, ArnBCADT, and PagP. We hypothesize that crrB mutations induce elevated expression of the arnBCADTEF operon and pagP via PmrAB and PhoPQ. Moreover, the multidrug efflux pump KexD, which was induced by crrB mutation, also contributed to colistin resistance. Overall, our results demonstrated proteomic responses to colistin treatment and the mechanism of CrrB-mediated colistin resistance, which may offer valuable information on the management of polymyxin resistance.


Assuntos
Colistina , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Mutação , Proteômica
5.
Nucleic Acids Res ; 48(2): 830-846, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31799605

RESUMO

RNA methylations are essential both for RNA structure and function, and are introduced by a number of distinct methyltransferases (MTases). In recent years, N6-methyladenosine (m6A) modification of eukaryotic mRNA has been subject to intense studies, and it has been demonstrated that m6A is a reversible modification that regulates several aspects of mRNA function. However, m6A is also found in other RNAs, such as mammalian 18S and 28S ribosomal RNAs (rRNAs), but the responsible MTases have remained elusive. 28S rRNA carries a single m6A modification, found at position A4220 (alternatively referred to as A4190) within a stem-loop structure, and here we show that the MTase ZCCHC4 is the enzyme responsible for introducing this modification. Accordingly, we found that ZCCHC4 localises to nucleoli, the site of ribosome assembly, and that proteins involved in RNA metabolism are overrepresented in the ZCCHC4 interactome. Interestingly, the absence of m6A4220 perturbs codon-specific translation dynamics and shifts gene expression at the translational level. In summary, we establish ZCCHC4 as the enzyme responsible for m6A modification of human 28S rRNA, and demonstrate its functional significance in mRNA translation.


Assuntos
Adenosina/análogos & derivados , Metiltransferases/genética , RNA Mensageiro/genética , RNA Ribossômico 28S/genética , Adenosina/química , Adenosina/genética , Catálise , Humanos , Metilação , Metiltransferases/química , Ligação Proteica/genética , RNA Ribossômico 28S/química
6.
Nucleic Acids Res ; 47(20): e126, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31504776

RESUMO

Methylation of guanosine on position N7 (m7G) on internal RNA positions has been found in all domains of life and have been implicated in human disease. Here, we present m7G Mutational Profiling sequencing (m7G-MaP-seq), which allows high throughput detection of m7G modifications at nucleotide resolution. In our method, m7G modified positions are converted to abasic sites by reduction with sodium borohydride, directly recorded as cDNA mutations through reverse transcription and sequenced. We detect positions with increased mutation rates in the reduced and control samples taking the possibility of sequencing/alignment error into account and use replicates to calculate statistical significance based on log likelihood ratio tests. We show that m7G-MaP-seq efficiently detects known m7G modifications in rRNA with mutational rates up to 25% and we map a previously uncharacterised evolutionarily conserved rRNA modification at position 1581 in Arabidopsis thaliana SSU rRNA. Furthermore, we identify m7G modifications in budding yeast, human and arabidopsis tRNAs and demonstrate that m7G modification occurs before tRNA splicing. We do not find any evidence for internal m7G modifications being present in other small RNA, such as miRNA, snoRNA and sRNA, including human Let-7e. Likewise, high sequencing depth m7G-MaP-seq analysis of mRNA from E. coli or yeast cells did not identify any internal m7G modifications.


Assuntos
Guanosina/análogos & derivados , Mutação , Processamento Pós-Transcricional do RNA , RNA/química , Análise de Sequência de RNA/métodos , Arabidopsis , Guanosina/análise , Células HeLa , Humanos , Metilação , RNA/genética , RNA/metabolismo , Saccharomyces cerevisiae
7.
Nucleic Acids Res ; 47(2): 779-793, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30496516

RESUMO

Uracil arises in DNA by hydrolytic deamination of cytosine (C) and by erroneous incorporation of deoxyuridine monophosphate opposite adenine, where the former event is devastating by generation of C → thymine transitions. The base excision repair (BER) pathway replaces uracil by the correct base. In human cells two uracil-DNA glycosylases (UDGs) initiate BER by excising uracil from DNA; one is hSMUG1 (human single-strand-selective mono-functional UDG). We report that repair initiation by hSMUG1 involves strand incision at the uracil site resulting in a 3'-α,ß-unsaturated aldehyde designated uracil-DNA incision product (UIP), and a 5'-phosphate. UIP is removed from the 3'-end by human apurinic/apyrimidinic (AP) endonuclease 1 preparing for single-nucleotide insertion. hSMUG1 also incises DNA or processes UIP to a 3'-phosphate designated uracil-DNA processing product (UPP). UIP and UPP were indirectly identified and quantified by polyacrylamide gel electrophoresis and chemically characterised by matrix-assisted laser desorption/ionisation time-of-flight mass-spectrometric analysis of DNA from enzyme reactions using 18O- or 16O-water. The formation of UIP accords with an elimination (E2) reaction where deprotonation of C2' occurs via the formation of a C1' enolate intermediate. A three-phase kinetic model explains rapid uracil excision in phase 1, slow unspecific enzyme adsorption/desorption to DNA in phase 2 and enzyme-dependent AP site incision in phase 3.


Assuntos
DNA/metabolismo , Uracila-DNA Glicosidase/metabolismo , Uracila/metabolismo , DNA/química , Clivagem do DNA , Reparo do DNA , Humanos , Cinética , Temperatura
8.
RNA Biol ; 15(8): 1060-1070, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29947286

RESUMO

All organisms contain RNA modifications in their ribosomal RNA (rRNA), but the importance, positions and exact function of these are still not fully elucidated. Various functions such as stabilizing structures, controlling ribosome assembly and facilitating interactions have been suggested and in some cases substantiated. Bacterial rRNA contains much fewer modifications than eukaryotic rRNA. The rRNA modification patterns in bacteria differ from each other, but too few organisms have been mapped to draw general conclusions. This study maps 23S ribosomal RNA modifications in Clostridium sporogenes that can be characterized as a non-toxin producing Clostridium botulinum. Clostridia are able to sporulate and thereby survive harsh conditions, and are in general considered to be resilient to antibiotics. Selected regions of the 23S rRNA were investigated by mass spectrometry and by primer extension analysis to pinpoint modified sites and the nature of the modifications. Apparently, C. sporogenes 23S rRNA contains few modifications compared to other investigated bacteria. No modifications were identified in domain II and III of 23S rRNA. Three modifications were identified in domain IV, all of which have also been found in other organisms. Two unusual modifications were identified in domain V, methylated dihydrouridine at position U2449 and dihydrouridine at position U2500 (Escherichia coli numbering), in addition to four previously known modified positions. The enzymes responsible for the modifications were searched for in the C. sporogenes genome using BLAST with characterized enzymes as query. The search identified genes potentially coding for RNA modifying enzymes responsible for most of the found modifications.


Assuntos
Clostridium/genética , Genoma Bacteriano , Processamento Pós-Transcricional do RNA , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , Clostridium/classificação , Clostridium/crescimento & desenvolvimento , Conformação de Ácido Nucleico
9.
Extremophiles ; 20(1): 91-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26590840

RESUMO

The bacterium Deinococcus radiodurans-like all other organisms-introduces nucleotide modifications into its ribosomal RNA. We have previously found that the bacterium contains a Carbon-5 methylation on cytidine 2499 of its 23S ribosomal RNA, which is so far the only modified version of cytidine 2499 reported. Using homology search, we identified the open reading frame DR_0049 as the primary candidate gene for the methyltransferase that modifies cytidine 2499. Mass spectrometric analysis demonstrated that recombinantly expressed DR0049 protein methylates E. coli cytidine 2499 both in vitro and in vivo. We also inactivated the DR_0049 gene in D. radiodurans through insertion of a chloramphenicol resistance cassette. This resulted in complete absence of the cytidine 2499 methylation, which all together demonstrates that DR_0049 encodes the methyltransferase producing m(5)C2499 in D. radiodurans 23S rRNA. Growth experiments disclosed that inactivation of DR_0049 is associated with a severe growth defect, but available ribosome structures show that cytidine 2499 is positioned very similar in D. radiodurans harbouring the modification and E. coli without the modification. Hence there is no obvious structure-based explanation for the requirement for the C2499 posttranscriptional modification in D. radiodurans.


Assuntos
Proteínas de Bactérias/metabolismo , DNA-Citosina Metilases/metabolismo , Deinococcus/enzimologia , RNA Ribossômico 23S/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , DNA-Citosina Metilases/química , DNA-Citosina Metilases/genética , Deinococcus/genética , Deinococcus/metabolismo , Dados de Sequência Molecular , Fases de Leitura Aberta
10.
Glycobiology ; 25(12): 1350-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26306636

RESUMO

A mutant Trypanosoma rangeli sialidase, Tr7, expressed in Pichia pastoris, exhibits significant trans-sialidase activity, and has been used for analytical-scale production of sialylated human milk oligosaccharides. Mass spectrometry-based site-specific N-glycoprofiling of Tr7 showed that heterogeneous high-mannose type N-glycans were present at all the five potential N-linked glycosites. N-linked glycans in Tr7 were predominantly neutral oligosaccharides with compositions Man(8-16)GlcNA(c2), but also mono- and di-phosphorylated oligosaccharides in the forms of Man(9-15)P(1)GlcNA(c2) and Man(9-14)P(2)GlcNA(c2), respectively. Some phosphorylated N-linked glycans further contained an additional HexNAc, which has not previously been reported in P. pastoris-expressed proteins. We compiled a method pipeline that combined hydrophilic interaction liquid chromatography enrichment of glycopeptides, high accuracy mass spectrometry and automated interpretation of the mass spectra with in-house developed "MassAI" software, which proved efficient in glycan site microheterogeneity analysis. Functional analysis showed that the deglycosylated Tr7 retained more than 90% of both the sialidase and trans-sialidase activities relative to the glycosylated Tr7.


Assuntos
Mutação , Neuraminidase/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo , Trypanosoma rangeli/enzimologia , Glicosilação , Leite Humano/química , Neuraminidase/química , Neuraminidase/genética , Pichia/genética , Pichia/metabolismo , Polissacarídeos/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes , Trypanosoma rangeli/genética
11.
Enzyme Microb Technol ; 78: 54-62, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26215345

RESUMO

Several bacterial sialyltransferases have been reported to be multifunctional also catalysing sialidase and trans-sialidase reactions. In this study, we examined the trans-sialylation efficacy and regioselectivity of mutants of the multifunctional Pasteurella multocida sialyltransferase (PmST) for catalysing the synthesis of 3'- and 6'-sialyllactose using casein glycomacropeptide as sialyl-donor and lactose as acceptor. The mutation P34H led to a 980-fold increase in α-2,6-sialyltransferase activity (with cytidine-5'-monophospho-N-acetylneuraminic acid as donor), while its α-2,3-sialyltransferase activity was abolished. Histidine in this position is conserved in α-2,6-sialyltransferases and has been suggested, and recently confirmed, to be the determinant for strict regiospecificity in the sialyltransferase reaction. Our data verified this theorem. In trans-sialidase reactions, the P34H mutant displayed a distinct preference for 6'-sialyllactose synthesis but low levels of 3'-sialyllactose were also produced. The sialyllactose yield was however lower than when using PmSTWT under optimal conditions for 6'-sialyllactose formation. The discrepancy in regiospecificity between the two reactions could indicate subtle differences in the substrate binding site in the two reactions. In contrast, the two mutations E271F and R313Y led to preferential synthesis of 3'-sialyllactose over 6'-sialyllactose and the double mutant (PmSTE271F/R313Y) exhibited the highest α-2,3-regioselectivity via reduced sialidase and α-2,6-trans-sialidase activity. The double mutant PmSTE271F/R313Y thus showed the highest α-2,3-regioselectivity and constitutes an interesting enzyme for regioselective synthesis of α-2,3-sialylated glycans. This study has expanded the understanding of the structure-function relationship of multifunctional, bacterial sialyltransferases and provided new enzymes for regioselective glycan sialylation.


Assuntos
Proteínas de Bactérias/metabolismo , Pasteurella multocida/enzimologia , Sialiltransferases/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Cinética , Lactose/análogos & derivados , Lactose/biossíntese , Modelos Moleculares , Mutagênese Sítio-Dirigida , Neuraminidase/química , Neuraminidase/genética , Neuraminidase/metabolismo , Oligossacarídeos/biossíntese , Pasteurella multocida/genética , Engenharia de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sialiltransferases/química , Sialiltransferases/genética , Homologia Estrutural de Proteína
12.
Appl Microbiol Biotechnol ; 98(24): 10077-89, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24946865

RESUMO

Compared to other plant cell wall-degrading enzymes, proteases are less well understood. In this study, the extracellular metalloprotease Prt1 from Pectobacterium carotovorum (formerly Erwinia carotovora) was expressed in Escherichia coli and characterized with respect to N-terminal processing, thermal stability, substrate targets, and cleavage patterns. Prt1 is an autoprocessing protease with an N-terminal signal pre-peptide and a pro-peptide which has to be removed in order to activate the protease. The sequential cleavage of the N-terminus was confirmed by mass spectrometry (MS) fingerprinting and N-terminus analysis. The optimal reaction conditions for the activity of Prt1 on azocasein were at pH 6.0, 50 °C. At these reaction conditions, K M was 1.81 mg/mL and k cat was 1.82 × 10(7) U M(-1). The enzyme was relatively stable at 50 °C with a half-life of 20 min. Ethylenediaminetetraacetic acid (EDTA) treatment abolished activity; Zn(2+) addition caused regain of the activity, but Zn(2+)addition decreased the thermal stability of the Prt1 enzyme presumably as a result of increased proteolytic autolysis. In addition to casein, the enzyme catalyzed degradation of collagen, potato lectin, and plant extensin. Analysis of the cleavage pattern of different substrates after treatment with Prt1 indicated that the protease had a substrate cleavage preference for proline in substrate residue position P1 followed by a hydrophobic residue in residue position P1' at the cleavage point. The activity of Prt1 against plant cell wall structural proteins suggests that this enzyme might become an important new addition to the toolbox of cell-wall-degrading enzymes for biomass processing.


Assuntos
Metaloendopeptidases/metabolismo , Pectobacterium carotovorum/enzimologia , Processamento de Proteína Pós-Traducional , Cátions Bivalentes/metabolismo , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Ativadores de Enzimas/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Metaloendopeptidases/química , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Especificidade por Substrato , Temperatura , Zinco/metabolismo
13.
PLoS One ; 9(6): e98729, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24914785

RESUMO

The ALKBH family of Fe(II) and 2-oxoglutarate dependent oxygenases comprises enzymes that display sequence homology to AlkB from E. coli, a DNA repair enzyme that uses an oxidative mechanism to dealkylate methyl and etheno adducts on the nucleobases. Humans have nine different ALKBH proteins, ALKBH1-8 and FTO. Mammalian and plant ALKBH8 are tRNA hydroxylases targeting 5-methoxycarbonylmethyl-modified uridine (mcm5U) at the wobble position of tRNAGly(UCC). In contrast, the genomes of some bacteria encode a protein with strong sequence homology to ALKBH8, and robust DNA repair activity was previously demonstrated for one such protein. To further explore this apparent functional duality of the ALKBH8 proteins, we have here enzymatically characterized a panel of such proteins, originating from bacteria, protozoa and mimivirus. All the enzymes showed DNA repair activity in vitro, but, interestingly, two protozoan ALKBH8s also catalyzed wobble uridine modification of tRNA, thus displaying a dual in vitro activity. Also, we found the modification status of tRNAGly(UCC) to be unaltered in an ALKBH8 deficient mutant of Agrobacterium tumefaciens, indicating that bacterial ALKBH8s have a function different from that of their eukaryotic counterparts. The present study provides new insights on the function and evolution of the ALKBH8 family of proteins.


Assuntos
Reparo do DNA , Dioxigenases/metabolismo , Proteínas de Protozoários/metabolismo , RNA de Transferência/metabolismo , tRNA Metiltransferases/metabolismo , Agrobacterium tumefaciens/enzimologia , Agrobacterium tumefaciens/genética , Sequência de Aminoácidos , Biologia Computacional , Dano ao DNA , Metilação de DNA , Dioxigenases/química , Dioxigenases/genética , Ativação Enzimática , Humanos , Dados de Sequência Molecular , Mutação , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , tRNA Metiltransferases/química , tRNA Metiltransferases/genética
14.
PLoS One ; 9(1): e83902, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24404142

RESUMO

This paper reports rational engineering of Trypanosoma rangeli sialidase to develop an effective enzyme for a potentially important type of reactivity: production of sialylated prebiotic glycans. The Trypanosoma cruzi trans-sialidase and the homologous T. rangeli sialidase has previously been used to investigate the structural requirements for trans-sialidase activity. We observed that the T. cruzi trans-sialidase has a seven-amino-acid motif (197-203) at the border of the substrate binding cleft. The motif differs substantially in chemical properties and substitution probability from the homologous sialidase, and we hypothesised that this motif is important for trans-sialidase activity. The 197-203 motif is strongly positively charged with a marked change in hydrogen bond donor capacity as compared to the sialidase. To investigate the role of this motif, we expressed and characterised a T. rangeli sialidase mutant, Tr13. Conditions for efficient trans-sialylation were determined, and Tr13's acceptor specificity demonstrated promiscuity with respect to the acceptor molecule enabling sialylation of glycans containing terminal galactose and glucose and even monomers of glucose and fucose. Sialic acid is important in association with human milk oligosaccharides, and Tr13 was shown to sialylate a number of established and potential prebiotics. Initial evaluation of prebiotic potential using pure cultures demonstrated, albeit not selectively, growth of Bifidobacteria. Since the 197-203 motif stands out in the native trans-sialidase, is markedly different from the wild-type sialidase compared to previous mutants, and is shown here to confer efficient and broad trans-sialidase activity, we suggest that this motif can serve as a framework for future optimization of trans-sialylation towards prebiotic production.


Assuntos
Neuraminidase/metabolismo , Polissacarídeos/metabolismo , Trypanosoma rangeli/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Ativação Enzimática , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Neuraminidase/química , Neuraminidase/genética , Polissacarídeos/química , Conformação Proteica , Engenharia de Proteínas , Alinhamento de Sequência , Especificidade por Substrato , Trypanosoma rangeli/genética
15.
N Biotechnol ; 31(2): 156-65, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24316323

RESUMO

A Trypanosoma cruzi trans-sialidase (E.C. 3.2.1.18) was cloned into Pichia pastoris and expressed. The pH and temperature optimum of the enzyme was determined as pH 5.7 and 30°C. Using casein glycomacropeptide (CGMP) and lactose as sialyl-donor and acceptor respectively, the optimal donor/acceptor ratio for the trans-sialidase catalysed 3'-sialyllactose production was found to be 1:4. Quantitative amounts of 3'-sialyllactose were produced from CGMP and lactose at a yield of 40mg/g CGMP. The 3'-sialyllactose obtained exerted a stimulatory effect on selected probiotic strains, including different Bifidobacterium strains in single culture fermentations. The trans-sialidase also catalysed the transfer of sialic acid from CGMP to galacto-oligosaccharides (GOS) and to the human milk oligosaccharide (HMO) backbone lacto-N-tetraose (LNT) to produce 3'-sialyl-GOS, including doubly sialylated GOS products, and 3'-sialyl-LNT, respectively. This work thus provides proof of the concept of producing 3'-sialyllactose and potentially other sialylated HMOs as well as sialylated GOS enzymatically by trans-sialidase activity, while at the same time providing valorisation of CGMP, a co-processing product from cheese manufacture.


Assuntos
Glicoproteínas/química , Leite Humano/química , Ácido N-Acetilneuramínico/química , Neuraminidase/química , Oligossacarídeos/química , Proteínas de Protozoários/química , Trypanosoma cruzi/enzimologia , Caseínas/química , Feminino , Glicoproteínas/genética , Humanos , Neuraminidase/genética , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Trypanosoma cruzi/genética
16.
J Biotechnol ; 170: 60-7, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24291191

RESUMO

This study examined a recombinant Pasteurella multocida sialyltransferase exhibiting dual trans-sialidase activities. The enzyme catalyzed trans-sialylation using either 2-O-(p-nitrophenyl)-α-d-N-acetylneuraminic acid or casein glycomacropeptide (whey protein) as the sialyl donor and lactose as the acceptor, resulting in production of both 3'-sialyllactose and 6'-sialyllactose. This is the first study reporting α-2,6-trans-sialidase activity of this sialyltransferase (EC 2.4.99.1 and 2.4.99.4). A response surface design was used to evaluate the effects of three reaction parameters (pH, temperature, and lactose concentration) on enzymatic production of 3'- and 6'-sialyllactoses using 5% (w/v) casein glycomacropeptide (equivalent to 9mM bound sialic acid) as the donor. The maximum yield of 3'-sialyllactose (2.75±0.35mM) was achieved at a reaction condition with pH 6.4, 40°C, 100mM lactose after 6h; and the largest concentration of 6'-sialyllactose (3.33±0.38mM) was achieved under a condition with pH 5.4, 40°C, 100mM lactose after 8h. 6'-sialyllactose was presumably formed from α-2,3 bound sialic acid in the casein glycomacropeptide as well as from 3'-sialyllactose produced in the reaction. The kcat/Km value for the enzyme using 3'-sialyllactose as the donor for 6'-sialyllactose synthesis at pH 5.4 and 40°C was determined to be 23.22±0.7M(-1)s(-1). Moreover, the enzyme was capable of catalyzing the synthesis of both 3'- and 6'-sialylated galactooligosaccharides, when galactooligosaccharides served as acceptors.


Assuntos
Glicoproteínas/metabolismo , Lactose/análogos & derivados , Proteínas do Leite/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/metabolismo , Oligossacarídeos/metabolismo , Pasteurella multocida/enzimologia , Sialiltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lactose/metabolismo , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura , Proteínas do Soro do Leite
17.
Antimicrob Agents Chemother ; 57(8): 4019-26, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23752511

RESUMO

The cfr gene encodes the Cfr methyltransferase that primarily methylates C-8 in A2503 of 23S rRNA in the peptidyl transferase region of bacterial ribosomes. The methylation provides resistance to six classes of antibiotics of clinical and veterinary importance. The rlmN gene encodes the RlmN methyltransferase that methylates C-2 in A2503 in 23S rRNA and A37 in tRNA, but RlmN does not significantly influence antibiotic resistance. The enzymes are homologous and use the same mechanism involving radical S-adenosyl methionine to methylate RNA via an intermediate involving a methylated cysteine in the enzyme and a transient cross-linking to the RNA, but they differ in which carbon atom in the adenine they methylate. Comparative sequence analysis identifies differentially conserved residues that indicate functional sequence divergence between the two classes of Cfr- and RlmN-like sequences. The differentiation between the two classes is supported by previous and new experimental evidence from antibiotic resistance, primer extensions, and mass spectrometry. Finally, evolutionary aspects of the distribution of Cfr- and RlmN-like enzymes are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Metiltransferases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência Consenso , Bases de Dados de Proteínas , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genes Bacterianos , Variação Genética , Metilação , Metiltransferases/genética , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Filogenia , Plasmídeos/genética , Plasmídeos/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína , Staphylococcus/enzimologia , Staphylococcus/genética
18.
RNA ; 18(9): 1687-701, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22847817

RESUMO

Guanosines are important for biological activities through their specific functional groups that are recognized for RNA or protein interactions. One example is recognition of N(1) of G37 in tRNA by S-adenosyl-methionine (AdoMet)-dependent tRNA methyltransferases to synthesize m(1)G37-tRNA, which is essential for translational fidelity in all biological domains. Synthesis of m(1)G37-tRNA is catalyzed by TrmD in bacteria and by Trm5 in eukarya and archaea, using unrelated and dissimilar structural folds. This raises the question of how dissimilar proteins recognize the same guanosine. Here we probe the mechanism of discrimination among functional groups of guanosine by TrmD and Trm5. Guanosine analogs were systematically introduced into tRNA through a combination of chemical and enzymatic synthesis. Single turnover kinetic assays and thermodynamic analysis of the effect of each analog on m(1)G37-tRNA synthesis reveal that TrmD and Trm5 discriminate functional groups differently. While both recognize N(1) and O(6) of G37, TrmD places a much stronger emphasis on these functional groups than Trm5. While the exocyclic 2-amino group of G37 is important for TrmD, it is dispensable for Trm5. In addition, while an adjacent G36 is obligatory for TrmD, it is nonessential for Trm5. These results depict a more rigid requirement of guanosine functional groups for TrmD than for Trm5. However, the sensitivity of both enzymes to analog substitutions, together with an experimental revelation of their low cellular concentrations relative to tRNA substrates, suggests a model in which these enzymes rapidly screen tRNA by direct recognition of G37 in order to monitor the global state of m(1)G37-tRNA.


Assuntos
Guanosina/metabolismo , tRNA Metiltransferases/metabolismo , Sequência de Bases , Guanosina/química , Cinética , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , RNA de Transferência/química , RNA de Transferência/metabolismo , Especificidade por Substrato , tRNA Metiltransferases/química
19.
J Biol Chem ; 287(33): 27593-600, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22711535

RESUMO

Methylation of cytidines at carbon-5 is a common posttranscriptional RNA modification encountered across all domains of life. Here, we characterize the modifications of C1942 and C1962 in Thermus thermophilus 23 S rRNA as 5-methylcytidines (m(5)C) and identify the two associated methyltransferases. The methyltransferase modifying C1942, named RlmO, has not been characterized previously. RlmO modifies naked 23 S rRNA, but not the assembled 50 S subunit or 70 S ribosomes. The x-ray crystal structure of this enzyme in complex with the S-adenosyl-l-methionine cofactor at 1.7 Å resolution confirms that RlmO is structurally related to other m(5)C rRNA methyltransferases. Key residues in the active site are located similar to the further distant 5-methyluridine methyltransferase RlmD, suggestive of a similar enzymatic mechanism. RlmO homologues are primarily found in mesophilic bacteria related to T. thermophilus. In accordance, we find that growth of the T. thermophilus strain with an inactivated C1942 methyltransferase gene is not compromised at non-optimal temperatures.


Assuntos
Proteínas de Bactérias/química , Coenzimas/química , Metiltransferases/química , S-Adenosilmetionina/química , Thermus thermophilus/enzimologia , Proteínas de Bactérias/metabolismo , Coenzimas/metabolismo , Cristalografia por Raios X , Metilação , Metiltransferases/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , S-Adenosilmetionina/metabolismo
20.
J Proteomics ; 75(12): 3434-49, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22348820

RESUMO

Many powerful analytical techniques for investigation of nucleic acids exist in the average modern molecular biology lab. The current review will focus on questions in RNA biology that have been answered by the use of mass spectrometry, which means that new biological information is the purpose and outcome of most of the studies we refer to. The review begins with a brief account of the subject "MS in the biology of RNA" and an overview of the prevalent RNA modifications identified to date. Fundamental considerations about mass spectrometric analysis of RNA are presented with the aim of detailing the analytical possibilities and challenges relating to the unique chemical nature of nucleic acids. The main biological topics covered are RNA modifications and the enzymes that perform the modifications. Modifications of RNA are essential in biology, and it is a field where mass spectrometry clearly adds knowledge of biological importance compared to traditional methods used in nucleic acid research. The biological applications are divided into analyses exclusively performed at the building block (mainly nucleoside) level and investigations involving mass spectrometry at the oligonucleotide level. We conclude the review discussing aspects of RNA identification and quantifications, which are upcoming fields for MS in RNA research. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.


Assuntos
Espectrometria de Massas/métodos , RNA/genética , Análise de Sequência de RNA/métodos , Sequência de Bases , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...