Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(5): e1010045, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500014

RESUMO

Identifying structural differences among proteins can be a non-trivial task. When contrasting ensembles of protein structures obtained from molecular dynamics simulations, biologically-relevant features can be easily overshadowed by spurious fluctuations. Here, we present SINATRA Pro, a computational pipeline designed to robustly identify topological differences between two sets of protein structures. Algorithmically, SINATRA Pro works by first taking in the 3D atomic coordinates for each protein snapshot and summarizing them according to their underlying topology. Statistically significant topological features are then projected back onto a user-selected representative protein structure, thus facilitating the visual identification of biophysical signatures of different protein ensembles. We assess the ability of SINATRA Pro to detect minute conformational changes in five independent protein systems of varying complexities. In all test cases, SINATRA Pro identifies known structural features that have been validated by previous experimental and computational studies, as well as novel features that are also likely to be biologically-relevant according to the literature. These results highlight SINATRA Pro as a promising method for facilitating the non-trivial task of pattern recognition in trajectories resulting from molecular dynamics simulations, with substantially increased resolution.


Assuntos
Ciência de Dados , Simulação de Dinâmica Molecular , Biofísica , Conformação Proteica , Proteínas/química
2.
Elife ; 102021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33843584

RESUMO

In some mammals and many social insects, highly cooperative societies are characterized by reproductive division of labor, in which breeders and nonbreeders become behaviorally and morphologically distinct. While differences in behavior and growth between breeders and nonbreeders have been extensively described, little is known of their molecular underpinnings. Here, we investigate the consequences of breeding for skeletal morphology and gene regulation in highly cooperative Damaraland mole-rats. By experimentally assigning breeding 'queen' status versus nonbreeder status to age-matched littermates, we confirm that queens experience vertebral growth that likely confers advantages to fecundity. However, they also upregulate bone resorption pathways and show reductions in femoral mass, which predicts increased vulnerability to fracture. Together, our results show that, as in eusocial insects, reproductive division of labor in mole-rats leads to gene regulatory rewiring and extensive morphological plasticity. However, in mole-rats, concentrated reproduction is also accompanied by costs to bone strength.


Some social animals are highly cooperative creatures that live in tight-knit colonies. Bees and ants are perhaps the most well-known examples of social insects, while Damaraland mole-rats and naked mole-rats, two rodent species found in southern and eastern Africa, are among the most cooperative mammal species. In these colony-forming animals, only one or a few females reproduce and these fertile females are frequently referred to as "queens". When an animal becomes a queen, her body shape can change dramatically to support the demands of high fertility and frequent reproduction. The molecular basis of such changes has been well-described in social insects. However, they are poorly understood in mammals. To address this knowledge gap, Johnston et al. studied how transitioning to queen status affects bone growth and structural integrity in Damaraland mole-rats, as well as body shape and size. The experiments compared non-breeding female mole-rats with other adult females recently paired with a male to become the sole breeder of a new colony. Johnston et al. also used bone-derived cells grown in the laboratory to assess underlying gene regulatory changes in new queen mole-rats. Johnston et al. showed that transitioning to the role of queen leads to a cascade of skeletal changes accompanied by shifts in the regulation of genetic pathways linked to bone growth. Queen mole-rats show accelerated growth in the spinal column of their lower back. These bones are called lumbar vertebrae and this likely allows them to have larger litters. However, queen mole-rats also lose bone growth potential in their leg bones and develop thinner thigh bones, which may increase the risk of bone fracture. Therefore, unlike highly social insects, mole-rats do not seem to have escaped the physical costs of intensive reproduction. This work adds to our understanding of the genes and physical traits that have evolved to support cooperative behaviour in social animals, including differences between insects and mammals. It also shows, with a striking example, how an animal's genome responds to social cues to produce a diverse range of traits that reflect their designated social role.


Assuntos
Evolução Biológica , Desenvolvimento Ósseo , Fêmur/crescimento & desenvolvimento , Fertilidade , Genoma , Vértebras Lombares/crescimento & desenvolvimento , Ratos-Toupeira/crescimento & desenvolvimento , Comportamento Sexual Animal , Fatores Etários , Animais , Desenvolvimento Ósseo/genética , Comportamento Cooperativo , Fertilidade/genética , Regulação da Expressão Gênica , Ratos-Toupeira/genética , Ratos-Toupeira/psicologia , Fatores Sexuais , Comportamento Social
3.
BMC Ecol Evol ; 21(1): 60, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33882818

RESUMO

BACKGROUND: Lemurs once rivalled the diversity of rest of the primate order despite thier confinement to the island of Madagascar. We test the adaptive radiation model of Malagasy lemur diversity using a novel combination of phylogenetic comparative methods and geometric methods for quantifying tooth shape. RESULTS: We apply macroevolutionary model fitting approaches and disparity through time analysis to dental topography metrics associated with dietary adaptation, an aspect of mammalian ecology which appears to be closely related to diversification in many clades. Metrics were also reconstructed at internal nodes of the lemur tree and these reconstructions were combined to generate dietary classification probabilities at internal nodes using discriminant function analysis. We used these reconstructions to calculate rates of transition toward folivory per million-year intervals. Finally, lower second molar shape was reconstructed at internal nodes by modelling the change in shape of 3D meshes using squared change parsimony along the branches of the lemur tree. Our analyses of dental topography metrics do not recover an early burst in rates of change or a pattern of early partitioning of subclade disparity. However, rates of change in adaptations for folivory were highest during the Oligocene, an interval of possible forest expansion on the island. CONCLUSIONS: There was no clear phylogenetic signal of bursts of morphological evolution early in lemur history. Reconstruction of the molar morphologies corresponding to the ancestral nodes of the lemur tree suggest that this may have been driven by a shift toward defended plant resources, however. This suggests a response to the ecological opportunity offered by expanding forests, but not necessarily a classic adaptive radiation initiated by dispersal to Madagascar.


Assuntos
Lemur , Strepsirhini , Animais , Dieta , Madagáscar , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...