Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 436(5): 168312, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827329

RESUMO

Photoactivated adenylate cyclases (PACs) are light-activated enzymes that combine a BLUF (blue-light using flavin) domain and an adenylate cyclase domain that are able to increase the levels of the important second messenger cAMP (cyclic adenosine monophosphate) upon blue-light excitation. The light-induced changes in the BLUF domain are transduced to the adenylate cyclase domain via a mechanism that has not yet been established. One critical residue in the photoactivation mechanism of BLUF domains, present in the vicinity of the flavin is the glutamine amino acid close to the N5 of the flavin. The role of this residue has been investigated extensively both experimentally and theoretically. However, its role in the activity of the photoactivated adenylate cyclase, OaPAC has never been addressed. In this work, we applied ultrafast transient visible and infrared spectroscopies to study the photochemistry of the Q48E OaPAC mutant. This mutation altered the primary electron transfer process and switched the enzyme into a permanent 'on' state, able to increase the cAMP levels under dark conditions compared to the cAMP levels of the dark-adapted state of the wild-type OaPAC. Differential scanning calorimetry measurements point to a less compact structure for the Q48E OaPAC mutant. The ensemble of these findings provide insight into the important elements in PACs and how their fine tuning may help in the design of optogenetic devices.


Assuntos
Adenilil Ciclases , Proteínas de Bactérias , Glutamina , Oscillatoria , Adenilil Ciclases/química , Adenilil Ciclases/genética , Adenilil Ciclases/efeitos da radiação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/efeitos da radiação , Flavinas/química , Flavinas/efeitos da radiação , Luz , Mutação , Glutamina/genética , Domínios Proteicos/efeitos dos fármacos , Transporte de Elétrons , Ativação Enzimática/efeitos da radiação , Oscillatoria/enzimologia
2.
J Biol Chem ; 299(8): 105056, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468104

RESUMO

Photoactivated adenylate cyclases (PACs) are light activated enzymes that combine blue light sensing capacity with the ability to convert ATP to cAMP and pyrophosphate (PPi) in a light-dependent manner. In most of the known PACs blue light regulation is provided by a blue light sensing domain using flavin which undergoes a structural reorganization after blue-light absorption. This minor structural change then is translated toward the C-terminal of the protein, inducing a larger conformational change that results in the ATP conversion to cAMP. As cAMP is a key second messenger in numerous signal transduction pathways regulating various cellular functions, PACs are of great interest in optogenetic studies. The optimal optogenetic device must be "silent" in the dark and highly responsive upon light illumination. PAC from Oscillatoria acuminata is a very good candidate as its basal activity is very small in the dark and the conversion rates increase 20-fold upon light illumination. We studied the effect of replacing D67 to N, in the blue light using flavin domain. This mutation was found to accelerate the primary electron transfer process in the photosensing domain of the protein, as has been predicted. Furthermore, it resulted in a longer lived signaling state, which was formed with a lower quantum yield. Our studies show that the overall effects of the D67N mutation lead to a slightly higher conversion of ATP to cAMP, which points in the direction that by fine tuning the kinetic properties more responsive PACs and optogenetic devices can be generated.


Assuntos
Adenilil Ciclases , Proteínas de Bactérias , Oscillatoria , Trifosfato de Adenosina , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flavinas/metabolismo , Luz , Sistemas do Segundo Mensageiro , Oscillatoria/enzimologia
3.
Biophys J ; 114(4): 777-787, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29490240

RESUMO

The actin cytoskeleton fulfills numerous key cellular functions, which are tightly regulated in activity, localization, and temporal patterning by actin binding proteins. Tropomyosins and gelsolin are two such filament-regulating proteins. Here, we investigate how the effects of tropomyosins are coupled to the binding and activity of gelsolin. We show that the three investigated tropomyosin isoforms (Tpm1.1, Tpm1.12, and Tpm3.1) bind to gelsolin with micromolar or submicromolar affinities. Tropomyosin binding enhances the activity of gelsolin in actin polymerization and depolymerization assays. However, the effects of the three tropomyosin isoforms varied. The tropomyosin isoforms studied also differed in their ability to protect pre-existing actin filaments from severing by gelsolin. Based on the observed specificity of the interactions between tropomyosins, actin filaments, and gelsolin, we propose that tropomyosin isoforms specify which populations of actin filaments should be targeted by, or protected from, gelsolin-mediated depolymerization in living cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Gelsolina/metabolismo , Tropomiosina/química , Citoesqueleto de Actina/química , Gelsolina/química , Humanos , Modelos Moleculares , Polimerização , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Tropomiosina/metabolismo
4.
Cytoskeleton (Hoboken) ; 70(11): 755-65, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24124168

RESUMO

Tropomyosins were first identified in neuronal systems in 1973. Although numerous isoforms were found and described since then, many aspects of their function and interactions remained unknown. Tropomyosin isoforms show different sorting pattern in neurogenesis. As one example, TM5NM1/2 is present in developing axons, but it is replaced by TMBr-3 in mature neurons, suggesting that these tropomyosin isoforms contribute differently to the establishment of the functional features of the neuronal actin networks. We developed a method for the efficient purification of TMBr-3 and TM5NM1 as recombinant proteins using bacterial expression system and investigated their interactions with actin. We found that both isoforms bind actin filaments, however, the binding of TM5NM1 was much stronger than that of TMBr-3. TMBr-3 and TM5NM1 modestly affected actin assembly kinetics, in an opposite manner. Consistently with the higher affinity of TM5NM1 it inhibited actin filament disassembly more efficiently than TMBr-3. Similarly to other previously studied tropomyosins TM5NM1 inhibited the Arp2/3 complex-mediated actin assembly. Notably, TMBr-3 did not influence the Arp2/3 complex-mediated polymerization. This is a unique feature of TMBr-3, since so far it is the only known tropomyosin supporting the activity of the Arp2/3 complex, indicating that TMBr-3 may colocalize and work simultaneously with Arp2/3 complex in neuronal cells.


Assuntos
Actinas/metabolismo , Tropomiosina/isolamento & purificação , Tropomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Sequência de Aminoácidos , Animais , Éxons/genética , Fluorescência , Cinética , Camundongos , Dados de Sequência Molecular , Polimerização , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Coelhos , Fatores de Tempo , Tropomiosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...