Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 19(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38422523

RESUMO

In post-adhesion surgery, there is a clinical need for anti-adhesion membranes specifically designed for the liver, given the limited efficacy of current commercial products. To address this demand, we present a membrane suitable for liver surgery applications, fabricated through the modification of decellularized porcine pericardium with 20 KDa hexaglycerol octa (succinimidyloxyglutaryl) polyoxyethylene (8-arm PEGNHS). We also developed an optimized modification procedure to produce a high-performance anti-adhesion barrier. The modified membrane significantly inhibited fibroblast cell adherence while maintaining minimal levels of inflammation. By optimizing the modification ratio, we successfully controlled post-adhesion formation. Notably, the 8-arm PEG-modified pericardium with a molar ratio of 5 exhibited the ability to effectively prevent post-adhesion formation on the liver compared to both the control and Seprafilm®, with a low adhesion score of 0.5 out of 3.0. Histological analysis further confirmed its potential for easy separation. Furthermore, the membrane demonstrated regenerative capabilities, as evidenced by the proliferation of mesothelial cells on its surface, endowing anti-adhesion properties between the abdominal wall and liver. These findings highlight the membrane's potential as a reliable barrier for repeated liver resection procedures that require the removal of the membrane multiple times.


Assuntos
Inflamação , Pericárdio , Suínos , Animais , Pericárdio/metabolismo , Aderências Teciduais/prevenção & controle , Aderências Teciduais/metabolismo , Aderências Teciduais/patologia , Fígado/metabolismo
2.
J Artif Organs ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194053

RESUMO

Understanding the interaction between macrophages and biomaterials is important for the creation of new biomaterials and the development of technologies to control macrophage function. Since macrophages are strongly adhesive, caution is required when performing in vitro evaluations. Similarly, when THP-1 cells, macrophage precursor cells, are differentiated into macrophages using phorbol-12-myristate-13-acetate (PMA), it becomes difficult to detach them from the adherent substrate, which has been a problem on investigation of immunological responses to biomaterials. In this study, the interaction of THP-1 cell-differentiated macrophages with biomaterials was analyzed based on a new method of seeding THP-1 cells. THP-1 cells were cultured in static and rotation culture without and with PMA. In undifferentiated THP-1 cells, there was no change in cellular function between static and rotation cultures. In rotation culture with PMA, THP-1 cells differentiated and formed macrophage aggregates. IL-1ß and MRC1 expression in macrophage aggregates was examined after differentiation and M1/M2 polarization. Macrophage aggregates in rotation culture tended to be polarized toward M2 macrophages compared with those in static culture. In the evaluation of the responses of macrophage aggregates to several kinds of polymeric materials, macrophage aggregates showed different changes in MRC1 expression over time at 30, 50, and 70 rpm. Rotation speed of 30 rpm was considered most appropriate condition in that it gave stable results with the same trend as obtained with static culture. The use of macrophage aggregates obtained by rotational culture is expected to provide new insights into the evaluation of inflammatory properties of biomaterials.

3.
J Mater Chem B ; 12(5): 1244-1256, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38168715

RESUMO

Implanting physical barrier materials to separate wounds from their surroundings is a promising strategy for preventing postoperative adhesions. Herein, we develop a material that switches from an anti-adhesive surface to an adhesive surface, preventing adhesion in the early stage of transplantation and then promoting recellularization. In this study, 2-arm, 4-arm, and 8-arm poly(ethylene glycol) succinimidyl glutarate (2-, 4-, 8-arm PEG-NHS) were used to modify the surface of decellularized porcine and bovine pericardium. The number of free amines on the surface of each material significantly decreased following modification regardless of the reaction molar ratio of NH2 and NHS, the number of PEG molecule branches, and the animal species of the decellularized tissue. The structure and mechanical properties of the pericardium were maintained after modification with PEG molecules. The time taken for the PEG molecules to detach through hydrolysis of the ester bonds differed between the samples, which resulted in different cell repulsion periods. By adjusting the reaction molar ratio, the number of PEG molecule branches, and the animal species of the decellularized pericardium, the duration of cell repulsion can be controlled and is expected to provide an anti-adhesion material for a variety of surgical procedures.


Assuntos
Polietilenoglicóis , Medicina Estatal , Succinimidas , Suínos , Animais , Bovinos , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Adesão Celular , Pericárdio
4.
Colloids Surf B Biointerfaces ; 234: 113735, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218136

RESUMO

Microplastic (MP) pollution is a global environmental problem. To understand the biological effects of MPs on humans, it is essential to evaluate the response of human cells to model plastic particles that mimic environmental MPs in a sensitive and non-invasive manner. In this study, we investigated the preparation of poly(ethylene terephthalate) (PET) fragments with properties similar to those of environmental MPs by combining photo-oxidative degradation via ultraviolet (UV) irradiation with mechanical pulverization and hydrolysis via ultrasound (US) exposure. Combination of UV and US treatments decreased the particle size of PET fragments to 10.2 µm and increased their crystallinity and Young's modulus to 35.7 % and 0.73 GPa, respectively, while untreated PET fragments showed the particle size of 18.9 µm, the crystallinity of 33.7 %, and Young's modulus of 0.48 GPa. In addition, an increase in negative surface potential and O/C ratio were observed for UV/US-treated PET fragments, suggesting surface oxidation via UV/US treatment. Cytokine secretion from human macrophages was evaluated by a highly sensitive inflammation evaluation system using the HiBiT-based chemiluminescence detection method developed by genome editing technology. UV/US-treated PET fragments induced a 1.4 times higher level of inflammatory cytokine secretion on inflammatory macrophages than untreated ones, suggesting that the biological responses of PET fragments could be influenced by changes in material properties via oxidation. In conclusion, UV/US treatment enables efficient preparation of model plastic particles and is expected to provide new insights into the evaluation of biological effects using human cells. (240 words).


Assuntos
Microplásticos , Ácidos Ftálicos , Poluentes Químicos da Água , Humanos , Plásticos , Polietilenotereftalatos , Macrófagos/química , Linhagem Celular , Etilenos , Citocinas , Poluentes Químicos da Água/análise
5.
Ann Biomed Eng ; 52(2): 282-291, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042765

RESUMO

Postoperative adhesion is a very common and serious complication that occurs frequently in cardiac surgery. The purpose of this study was to evaluate the efficacy of a fibrin hydrogel layer-anchored decellularized pericardial matrix in preventing pericardial adhesions in a miniature pig model with a myocardial injury. Fibrin hydrogel layer-anchored decellularized pericardial matrix was prepared by spraying a mixture of fibrinogen and thrombin on a fibrinogen-doped decellularized pericardium. Cardiac injury was generated by abrading and desiccating the epicardial surface of a miniature pig to induce severe postoperative adhesions. The adhesion between the epicardial surface and fibrin hydrogel layer-anchored decellularized pericardial matrix in three different regions (left outer, front, and right outer) was evaluated macroscopically one month after surgery. The fibrin hydrogel layer-anchored decellularized pericardial matrix showed significantly less adhesion than an autologous pericardium (0.2 ± 0.7 in DPM-FHG0.5 and 0.4 ± 0.8 in DPM-FHG1, p < 0.01) and expanded polytetrafluoroethylene (ePTFE) (1.6 ± 0.5, p < 0.05). The fibrin hydrogel concentration had no effect on preventing postoperative adhesion. A thinner fibrin hydrogel layer was observed on the decellularized pericardial matrix one month after surgery; however, the inside of the matrix was filled with fibrin hydrogel. Fibrin hydrogel layer-anchored decellularized pericardial matrix prevented postoperative epicardial adhesions in a miniature pig model. Our findings suggest that pericardial closure using a fibrin hydrogel layer-anchored decellularized pericardial matrix is a promising method for preventing adverse outcomes in reoperative surgeries.


Assuntos
Fibrina , Hidrogéis , Animais , Suínos , Porco Miniatura , Pericárdio , Fibrinogênio
6.
Gels ; 9(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37998957

RESUMO

Nanogels are candidate biomaterials for tissue engineering and drug delivery. In the present study, a cholesterol-hyaluronic acid hydrogel was developed, and the pro-inflammatory response of macrophages to the hydrogel was investigated to determine its use in biomedical applications. Hyaluronic acid modified with cholesterol (modification rate: 0-15%) and maleimide (Chol-HA) was synthesized. The Chol-HA nanogel was formed through self-assembly via hydrophobic cholesterol interactions in aqueous solution. The Chol-HA hydrogel was formed through chemical crosslinking of the Chol-HA nanogel via a Michael addition reaction between the maleimide and thiol groups of 4arm-PEGSH. We found that the Chol-HA hydrogels with 5, 10, and 15% cholesterol inhibited the pro-inflammatory response of HiBiT-THP-1 cells, suggesting that the cholesterol contributed to the macrophage response. Furthermore, Interleukin 4 (IL-4) encapsulated in the hydrogel of the Chol-HA nanogel enhanced the inhibition of the inflammatory response in HiBiT-THP-1 cells. These results provide useful insights into the biomedical applications of hydrogels.

7.
Langmuir ; 39(44): 15563-15571, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37882450

RESUMO

With the current worldwide increasing use of plastics year by year, nanoplastics (NPs) have become a global threat to environmental and public health concerns. Among plastics, polypropylene (PP) is widely used in industrial and medical applications. Owing to the lack of validated detection methods and standard materials for PP NPs, understanding the impact of PP NPs on the environmental and biological systems is still limited. Here, isotactic polypropylene (iPP) was fabricated into oxidized polypropylene micro/nanoplastics (OPPs) via a thermal oxidation using hydrogen peroxide (H2O2) under various heating temperatures. The resulting OPPs were investigated in terms of the size distribution, surface chemistry, morphology, and thermal property as well as their concentration-dependent cytotoxicity to a human intestinal epithelial cell line (Caco-2), which could be a route to uptake NPs into the body through the food chain. The average diameters of the OPPs decrease with increasing reaction temperature. The OPPs obtained at 175 °C (OPP175) were spherical in shape and had a rough surface, with size distributions of approximately 0.14 ± 0.02 µm. A significant increase in the carbonyl content of the oxidized product was confirmed by Fourier transform infrared and X-ray photoelectron spectroscopy analyses. Caco-2 cells were exposed to OPP175 in a dose-dependent manner, and a significant loss of cell viability occurred at the concentration of 100 µg/mL. Thus, this study provides a fundamental approach for the fabrication of a model of NPs for the urgently demanded in vitro and in vivo studies to assess the potential impact of NPs on biological systems.


Assuntos
Polipropilenos , Poluentes Químicos da Água , Humanos , Polipropilenos/química , Microplásticos , Células CACO-2 , Peróxido de Hidrogênio , Plásticos , Poluentes Químicos da Água/química
8.
Bioengineering (Basel) ; 10(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37508841

RESUMO

Uterine regeneration using decellularization scaffolds provides a novel treatment for uterine factor infertility. Decellularized scaffolds require maximal removal of cellular components and minimal damage to the extracellular matrix (ECM). Among many decellularization methods, the hydrostatic pressure (HP) method stands out due to its low cytotoxicity and superior ECM preservation compared to the traditional detergent methods. Conventionally, 980 MPa was utilized in HP decellularization, including the first successful implementation of uterine decellularization previously reported by our team. However, structural protein denaturation caused by exceeding pressure led to a limited regeneration outcome in our previous research. This factor urged the study on the effects of pressure conditions in HP methods on decellularized scaffolds. The authors, therefore, fabricated a decellularized uterine scaffold at varying pressure conditions and evaluated the scaffold qualities from the perspective of cell removal and ECM preservation. The results show that by using lower decellularization pressure conditions of 250 MPa, uterine tissue can be decellularized with more preserved structural protein and mechanical properties, which is considered to be promising for decellularized uterine scaffold fabrication applications.

9.
J Biomed Mater Res A ; 111(2): 198-208, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36069375

RESUMO

Recent applications of decellularized tissues include the ectopic use of sheets and powders for three-dimensional (3D) tissue reconstruction. Decellularized tissues are modified (or fabricated) with the desired functions for application to the target (transplanted or used) tissue, including soft-hard interregional tissues, such as ligaments, tendons, and periodontal ligaments. This study aimed to prepare a mineralized decellularized pericardium to construct a soft-hard interregional tissue by 3D fabrication of decellularized pericardium, for example, rolling up to a cylindrical form. The decellularized pericardial tissue was prepared using the high hydrostatic pressurization (HHP) and surfactants method. The pericardium consisted of bundles of aligned fibers, and the bundles were slightly disordered when prepared with the surfactant decellularization method compared with that prepared using the HHP decellularization method. Mineralization of the decellularized pericardium was performed using an alternate soaking process with various cycles. The surface of the decellularized pericardium was covered with calcium phosphate precipitates, which accumulated on the surface with an increasing number of soaking cycles. The inside of the HHP decellularized pericardium was mineralized uniformly, whereas the mineralization of the decellularized pericardium decreased toward the interior. These findings suggest that the decellularization method strongly affects the structure and mineralized parts of the decellularized pericardium. The mineralized decellularized pericardium could be a candidate material for reconstructing alternative interregional tissues, such as ligaments and tendons.

10.
Sci Rep ; 12(1): 22294, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566330

RESUMO

Decellularized xenogeneic vascular grafts can be used in revascularization surgeries. We have developed decellularization methods using high hydrostatic pressure (HHP), which preserves the extracellular structure. Here, we attempted ex vivo endothelialization of HHP-decellularized xenogeneic tissues using human endothelial cells (ECs) to prevent clot formation against human blood. Slices of porcine aortic endothelium were decellularized using HHP and coated with gelatin. Human umbilical vein ECs were directly seeded and cultured under dynamic flow or static conditions for 14 days. Dynamic flow cultures tend to demonstrate higher cell coverage. We then coated the tissues with the E8 fragment of human laminin-411 (hL411), which has high affinity for ECs, and found that Dynamic/hL411showed high area coverage, almost reaching 100% (Dynamic/Gelatin vs Dynamic/hL411; 58.7 ± 11.4 vs 97.5 ± 1.9%, P = 0.0017). Immunostaining revealed sufficient endothelial cell coverage as a single cell layer in Dynamic/hL411. A clot formation assay using human whole blood showed low clot formation in Dynamic/hL411, almost similar to that in the negative control, polytetrafluoroethylene. Surface modification of HHP-decellularized xenogeneic endothelial tissues combined with dynamic culture achieved sufficient ex vivo endothelialization along with prevention of clot formation, indicating their potential for clinical use as vascular grafts in the future.


Assuntos
Prótese Vascular , Gelatina , Humanos , Animais , Suínos , Células Endoteliais da Veia Umbilical Humana , Endotélio Vascular , Pressão Hidrostática , Engenharia Tecidual
11.
Bioengineering (Basel) ; 9(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290460

RESUMO

Hematopoiesis is maintained by the interaction of hematopoietic stem cells (HSCs) and bone marrow mesenchymal stem cells (MSCs) in bone marrow microenvironments, called niches. Certain genetic mutations in MSCs, not HSCs, provoke some hematopoietic neoplasms, such as myelodysplastic syndrome. An in vivo bone marrow niche model using human MSC cell lines with specific genetic mutations and bone scaffolds is necessary to elucidate these interactions and the disease onset. We focused on decellularized bone (DCB) as a useful bone scaffold and attempted to induce human MSCs (UE7T-9 cells) into the DCB. Using the CRISPR activation library, we identified SHC4 upregulation as a candidate factor, with the SHC4 overexpression in UE7T-9 cells activating their migratory ability and upregulating genes to promote hematopoietic cell migration. This is the first study to apply the CRISPR library to engraft cells into decellularized biomaterials. SHC4 overexpression is essential for engrafting UE7T-9 cells into DCB, and it might be the first step toward creating an in vivo human-mouse hybrid bone marrow niche model.

12.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012126

RESUMO

Decellularized tissues are widely used as promising materials in tissue engineering and regenerative medicine. Research on the microstructure and components of the extracellular matrix (ECM) was conducted to improve the current understanding of decellularized tissue functionality. The presence of matrix-bound nanovesicles (MBVs) embedded within the ECM was recently reported. Results of a previous experimental investigation revealed that decellularized tissues prepared using high hydrostatic pressure (HHP) exhibited good in vivo performance. In the current study, according to the hypothesis that MBVs are one of the functional components in HHP-decellularized tissue, we investigated the extraction of MBVs and the associated effects on vascular endothelial cells. Using nanoparticle tracking assay (NTA), transmission electron microscopy (TEM), and RNA analysis, nanosized (100-300 nm) and membranous particles containing small RNA were detected in MBVs derived from HHP-decellularized small intestinal submucosa (SIS), urinary bladder matrix (UBM), and liver. To evaluate the effect on the growth of vascular endothelial cells, which are important in the tissue regeneration process, isolated SIS-derived MBVs were exposed to vascular endothelial cells to induce cell proliferation. These results indicate that MBVs can be extracted from HHP-decellularized tissues and may play a significant role in tissue remodeling.


Assuntos
Células Endoteliais , Engenharia Tecidual , Matriz Extracelular/química , Pressão Hidrostática , RNA/análise , Engenharia Tecidual/métodos , Alicerces Teciduais/química
13.
Polymers (Basel) ; 14(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35745927

RESUMO

Recent applications of decellularized tissues have included the ectopic use of their sheets and powders for three-dimensional (3D) tissue reconstruction. Decellularized tissues are fabricated with the desired functions to employ them to a target tissue. The aim of this study was to develop a 3D reconstruction method using a recellularized pericardium to overcome the difficulties in cell infiltration into tight and dense tissues, such as ligament and tendon tissues. Decellularized pericardial tissues were prepared using the high hydrostatic pressurization (HHP) and surfactant methods. The pericardium consisted of bundles of aligned fibers. The bundles were slightly disordered in the surfactant decellularization method compared to the HHP decellularization method. The mechanical properties of the pericardium were maintained after the HHP and surfactant decellularizations. The HHP-decellularized pericardium was rolled up into a cylindrical formation. Its mechanical behavior was similar to that of a porcine anterior cruciate ligament in tensile testing. NIH3T3, C2C12, and mesenchymal stem cells were adhered with elongation and alignment on the HHP- and surfactant-decellularized pericardia, with dependences on the cell type and decellularization method. When the recellularized pericardium was rolled up into a cylinder formation and cultured by hanging circulation for 2 days, the cylinder formation and cellular elongation and alignment were maintained on the decellularized pericardium, resulting in a layer structure of cells in a cross-section. According to these results, the 3D-reconstructed decellularized pericardium with cells has the potential to be an attractive alternative to living tissues, such as ligament and tendon tissues.

14.
J Tissue Eng ; 13: 20417314221074018, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35083031

RESUMO

Tendons and ligaments are essential connective tissues that connect the muscle and bone. Their recovery from injuries is known to be poor, highlighting the crucial need for an effective therapy. A few reports have described the development of artificial ligaments with sufficient strength from human cells. In this study, we successfully generated a tendon-like tissue (bio-tendon) using human induced pluripotent stem cells (iPSCs). We first differentiated human iPSCs into mesenchymal stem cells (iPSC-MSCs) and transfected them with Mohawk (Mkx) to obtain Mkx-iPSC-MSCs, which were applied to a newly designed chamber with a mechanical stretch incubation system. The embedded Mkx-iPSC-MSCs created bio-tendons and exhibited an aligned extracellular matrix structure. Transplantation of the bio-tendons into a mouse Achilles tendon rupture model showed host-derived cell infiltration with improved histological score and biomechanical properties. Taken together, the bio-tendon generated in this study has potential clinical applications for tendon/ligament-related injuries and diseases.

15.
J Biosci Bioeng ; 133(1): 83-88, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34674960

RESUMO

The advances in infertility treatment technologies such as in vitro fertilization (IVF) help many infertile women to be able to get pregnant. However, these infertility treatments cannot be applied to women who are suffering from absolute uterine factor. Fabrication of functional scaffold in tissue engineering approach is believed to play an important role for uterine regeneration and uterus replacement for treating absolute uterine factor infertility. In this research, we developed an internal radial perfusion bioreactor to promote decellularization and recellularization for fabrication of functional engineered uterine tissue. As a result, the DNA contents of the decellularized uterine tissue with high hydrostatic pressure followed by 7 days internal perfusion washing decreased by 90% compared to native tissue. Collagen and proteoglycan contents in the pressurized uterine tissue with the internal perfusion bioreactor, static (control) and shaking treatment with high hydrostatic pressure showed no significant change compared to the native tissue. The newly developed perfusion bioreactor also enabled to recellularize in the decellularized tissue with statistically significant increase of DNA by 614% compared to non-seeded cell groups. Vimentin and 4',6-diamidino-2-phenylindole (DAPI) was homogeneously expressed in the seeded endometrial stromal cells in the recellularized tissue fabricated using the bioreactor. With the developed internal radial perfusion bioreactor, we are the first group to successfully recellularized uterine tissue in all layers including epithelium, endometrium and myometrium. These results showed that the internal perfusion bioreactor has potential to be utilized for fabrication of functional engineered tissue to promote tissue regeneration.


Assuntos
Infertilidade Feminina , Alicerces Teciduais , Animais , Reatores Biológicos , Matriz Extracelular , Feminino , Perfusão , Gravidez , Ratos , Engenharia Tecidual
16.
ACS Biomater Sci Eng ; 8(1): 261-272, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34937336

RESUMO

Postoperative adhesions are a very common and serious complication in cardiac surgery, and the development of an effective anti-adhesion membrane showing resistance to the physical stimulus generated by the pulsation of the heart is desirable. In this study, an anti-adhesion material was developed through amine coupling between decellularized bovine pericardia (dBPCs) and 4-arm poly(ethylene glycol) succinimidyl glutarate (4-arm PEG-NHS) for the postoperative care of cardiac surgical patients. The efficacy of the 4-arm PEG-functionalized dBPCs in the prevention of adhesions after cardiac surgery was investigated in a rabbit heart adhesion model. The dBPCs meet the requirements for biocompatibility, flexibility, and sufficient suturable strength, and the 4-arm PEG moieties provide an anti-adhesion effect by the high excluded volume interactions of the PEG chains with proteins. The 4-arm PEG-functionalized dBPCs had a significantly greater anti-adhesion effect than the other materials tested and showed re-establishment of the mesothelial monolayer. These results suggested that the 4-arm PEG-functionalized dBPCs are a favorable material for an anti-adhesion membrane.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Pericárdio , Animais , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Bovinos , Polietilenoglicóis , Coelhos , Aderências Teciduais/prevenção & controle
17.
Sci Technol Adv Mater ; 22(1): 607-615, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34377087

RESUMO

In this study, we designed and synthesized an implantable anti-CD25 antibody-immobilized polyethylene (CD25-PE) mesh to suppress tumor growth by removing regulatory T cells (Tregs). The PE mesh was graft-polymerized with poly(acrylic acid), and the anti-mouse CD25 antibody was then immobilized using the 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide reaction. Immobilization of the antibody on the PE mesh was confirmed by immunostaining. The CD25-PE mesh could effectively and selectively capture CD25-positive cells through antigen-antibody interactions when the CD25-PE mesh was incubated with a suspension of mouse spleen cells, including CD25-positive cells. In addition, implantation of the CD25-PE mesh into mice subcutaneously demonstrated the Treg-capturing ability of the CD25-PE mesh with only a weak inflammatory reaction. In tumor-bearing mice, tumor growth was suppressed by subcutaneous implantation of the CD25-PE mesh near the tumor for 1 week. These results suggested that the anti-CD25 antibody-immobilized material could capture Tregs in vivo and inhibit tumor proliferation in a limited tumor-bearing mouse model. Further research is needed to facilitate cancer immunotherapy using implantable anti-CD25 antibody-immobilized material as a Treg-capturing device.

18.
PLoS One ; 16(7): e0254160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34292963

RESUMO

Autologous vascular grafts are widely used in revascularization surgeries for small caliber targets. However, the availability of autologous conduits might be limited due to prior surgeries or the quality of vessels. Xenogeneic decellularized vascular grafts from animals can potentially be a substitute of autologous vascular grafts. Decellularization with high hydrostatic pressure (HHP) is reported to highly preserve extracellular matrix (ECM), creating feasible conditions for recellularization and vascular remodeling after implantation. In the present study, we conducted xenogeneic implantation of HHP-decellularized bovine vascular grafts from dorsalis pedis arteries to porcine carotid arteries and posteriorly evaluated graft patency, ECM preservation and recellularization. Avoiding damage of the luminal surface of the grafts from drying significantly during the surgical procedure increased the graft patency at 4 weeks after implantation (P = 0.0079). After the technical improvement, all grafts (N = 5) were patent with mild stenosis due to intimal hyperplasia at 4 weeks after implantation. Neither aneurysmal change nor massive thrombosis was observed, even without administration of anticoagulants nor anti-platelet agents. Elastica van Gieson and Sirius-red stainings revealed fair preservation of ECM proteins including elastin and collagen after implantation. The luminal surface of the grafts were thoroughly covered with von Willebrand factor-positive endothelium. Scanning electron microscopy of the luminal surface of implanted grafts exhibited a cobblestone-like endothelial cell layer which is similar to native vascular endothelium. Recellularization of the tunica media with alpha-smooth muscle actin-positive smooth muscle cells was partly observed. Thus, we confirmed that HHP-decellularized grafts are feasible for xenogeneic implantation accompanied by recellularization by recipient cells.


Assuntos
Bioprótese , Prótese Vascular , Artérias Carótidas/química , Túnica Média/química , Animais , Feminino , Pressão Hidrostática , Suínos
19.
PLoS One ; 16(5): e0246221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33999919

RESUMO

Due to an increasing number of cardiovascular diseases, artificial heart valves and blood vessels have been developed. Although cardiovascular applications using decellularized tissue have been studied, the mechanisms of their functionality remain unknown. To determine the important factors for preparing decellularized cardiovascular prostheses that show good in vivo performance, the effects of the luminal surface structure of the decellularized aorta on thrombus formation and cell behavior were investigated. Various luminal surface structures of a decellularized aorta were prepared by heating, drying, and peeling. The luminal surface structure and collagen denaturation were evaluated by immunohistological staining, collagen hybridizing peptide (CHP) staining, and scanning electron microscopy (SEM) analysis. To evaluate the effects of luminal surface structure of decellularized aorta on thrombus formation and cell behavior, blood clotting tests and recellularization of endothelial cells and smooth muscle cells were performed. The results of the blood clotting test showed that the closer the luminal surface structure is to the native aorta, the higher the anti-coagulant property. The results of the cell seeding test suggest that vascular cells recognize the luminal surface structure and regulate adhesion, proliferation, and functional expression accordingly. These results provide important factors for preparing decellularized cardiovascular prostheses and will lead to future developments in decellularized cardiovascular applications.


Assuntos
Aorta/ultraestrutura , Doenças Cardiovasculares/diagnóstico por imagem , Colágeno/ultraestrutura , Matriz Extracelular/ultraestrutura , Engenharia Tecidual , Animais , Aorta/patologia , Vasos Sanguíneos/patologia , Vasos Sanguíneos/ultraestrutura , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/terapia , Colágeno/química , Células Endoteliais/patologia , Células Endoteliais/ultraestrutura , Matriz Extracelular/genética , Próteses Valvulares Cardíacas , Humanos , Microscopia Eletrônica de Varredura , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/ultraestrutura , Suínos , Trombose/patologia , Alicerces Teciduais
20.
J Mater Chem B ; 8(48): 10977-10989, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33174886

RESUMO

The aim of this study was to determine an in vitro evaluation method that could directly predict in vivo performance of decellularized tissue for cardiovascular use. We hypothesized that key factors for in vitro evaluation would be found by in vitro assessment of decellularized aortas that previously showed good performance in vivo, such as high patency. We chose porcine aortas, decellularized using three different decellularization methods: sodium dodecyl-sulfate (SDS), freeze-thawing, and high-hydrostatic pressurization (HHP). Immunohistological staining, a blood clotting test, scanning electron microscopy (SEM) analysis, and recellularization of endothelial cells were used for the in vitro evaluation. There was a significant difference in the remaining extracellular matrix (ECM) components, ECM structure, and the luminal surface structure between the three decellularized aortas, respectively, resulting in differences in the recellularization of endothelial cells. On the other hand, there was no difference observed in the blood clotting test. These results suggested that the blood clotting test could be a key evaluation method for the prediction of in vivo performance. In addition, evaluation of the luminal surface structure and the recellularization experiment should be packaged as an in vitro evaluation because the long-term patency was probably affected. The evaluation approach in this study may be useful to establish regulations and a quality management system for a cardiovascular prosthesis.


Assuntos
Aorta/citologia , Aorta/fisiologia , Doenças Cardiovasculares/terapia , Células Endoteliais/fisiologia , Engenharia Tecidual/métodos , Animais , Aorta/efeitos dos fármacos , Aorta/transplante , Coagulação Sanguínea/efeitos dos fármacos , Coagulação Sanguínea/fisiologia , Doenças Cardiovasculares/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/transplante , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/fisiologia , Matriz Extracelular/transplante , Congelamento/efeitos adversos , Pressão Hidrostática/efeitos adversos , Dodecilsulfato de Sódio/toxicidade , Suínos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...