Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798344

RESUMO

The prefrontal cortex (PFC) is a region of the brain that in humans is involved in the production of higher-order functions such as cognition, emotion, perception, and behavior. Neurotransmission in the PFC produces higher-order functions by integrating information from other areas of the brain. At the foundation of neurotransmission, and by extension at the foundation of higher-order brain functions, are an untold number of coordinated molecular processes involving the DNA sequence variants in the genome, RNA transcripts in the transcriptome, and proteins in the proteome. These "multiomic" foundations are poorly understood in humans, perhaps in part because most modern studies that characterize the molecular state of the human PFC use tissue obtained when neurotransmission and higher-order brain functions have ceased (i.e., the postmortem state). Here, analyses are presented on data generated for the Living Brain Project (LBP) to investigate whether PFC tissue from individuals with intact higher-order brain function has characteristic multiomic foundations. Two complementary strategies were employed towards this end. The first strategy was to identify in PFC samples obtained from living study participants a signature of RNA transcript expression associated with neurotransmission measured intracranially at the time of PFC sampling, in some cases while participants performed a task engaging higher-order brain functions. The second strategy was to perform multiomic comparisons between PFC samples obtained from individuals with intact higher-order brain function at the time of sampling (i.e., living study participants) and PFC samples obtained in the postmortem state. RNA transcript expression within multiple PFC cell types was associated with fluctuations of dopaminergic, serotonergic, and/or noradrenergic neurotransmission in the substantia nigra measured while participants played a computer game that engaged higher-order brain functions. A subset of these associations - termed the "transcriptional program associated with neurotransmission" (TPAWN) - were reproduced in analyses of brain RNA transcript expression and intracranial neurotransmission data obtained from a second LBP cohort and from a cohort in an independent study. RNA transcripts involved in TPAWN were found to be (1) enriched for RNA transcripts associated with measures of neurotransmission in rodent and cell models, (2) enriched for RNA transcripts encoded by evolutionarily constrained genes, (3) depleted of RNA transcripts regulated by common DNA sequence variants, and (4) enriched for RNA transcripts implicated in higher-order brain functions by human population genetic studies. In PFC excitatory neurons of living study participants, higher expression of the genes in TPAWN tracked with higher expression of RNA transcripts that in rodent PFC samples are markers of a class of excitatory neurons that connect the PFC to deep brain structures. TPAWN was further reproduced by RNA transcript expression patterns differentiating living PFC samples from postmortem PFC samples, and significant differences between living and postmortem PFC samples were additionally observed with respect to (1) the expression of most primary RNA transcripts, mature RNA transcripts, and proteins, (2) the splicing of most primary RNA transcripts into mature RNA transcripts, (3) the patterns of co-expression between RNA transcripts and proteins, and (4) the effects of some DNA sequence variants on RNA transcript and protein expression. Taken together, this report highlights that studies of brain tissue obtained in a safe and ethical manner from large cohorts of living individuals can help advance understanding of the multiomic foundations of brain function.

2.
Anal Chem ; 96(16): 6097-6105, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38597398

RESUMO

This perspective encompasses a focused review of the literature leading to a tipping point in electroanalytical chemistry. We tie together the threads of a "revolution" quietly in the making for years through the work of many authors. Long-held misconceptions about the use of background subtraction in fast voltammetry are addressed. We lay out future advantages that accompany background-inclusive voltammetry, particularly when paired with modern machine-learning algorithms for data analysis.

3.
Sci Rep ; 14(1): 4627, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438386

RESUMO

Impulse Control Disorder (ICD) in Parkinson's disease is a behavioral addiction induced by dopaminergic therapies, but otherwise unclear etiology. The current study investigates the interaction of reward processing variables, dopaminergic therapy, and risky decision-making and subjective feelings in patients with versus without ICD. Patients with (n = 18) and without (n = 12) ICD performed a risky decision-making task both 'on' and 'off' standard-of-care dopaminergic therapies (the task was performed on 2 different days with the order of on and off visits randomized for each patient). During each trial of the task, participants choose between two options, a gamble or a certain reward, and reported how they felt about decision outcomes. Subjective feelings of 'pleasure' are differentially driven by expectations of possible outcomes in patients with, versus without ICD. While off medication, the influence of expectations about risky-decisions on subjective feelings is reduced in patients with ICD versus without ICD. While on medication, the influence of expected outcomes in patients with ICD versus without ICD becomes similar. Computational modeling of behavior supports the idea that latent decision-making factors drive subjective feelings in patients with Parkinson's disease and that ICD status is associated with a change in the relationship between factors associated with risky behavior and subjective feelings about the experienced outcomes. Our results also suggest that dopaminergic medications modulate the impact expectations have on the participants' subjective reports. Altogether our results suggest that expectations about risky decisions may be decoupled from subjective feelings in patients with ICD, and that dopaminergic medications may reengage these circuits and increase emotional reactivity in patients with ICD.


Assuntos
Transtornos Disruptivos, de Controle do Impulso e da Conduta , Doença de Parkinson , Humanos , Motivação , Doença de Parkinson/tratamento farmacológico , Emoções , Dopamina , Recompensa
4.
Nat Hum Behav ; 8(4): 718-728, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409356

RESUMO

Dopamine and serotonin are hypothesized to guide social behaviours. In humans, however, we have not yet been able to study neuromodulator dynamics as social interaction unfolds. Here, we obtained subsecond estimates of dopamine and serotonin from human substantia nigra pars reticulata during the ultimatum game. Participants, who were patients with Parkinson's disease undergoing awake brain surgery, had to accept or reject monetary offers of varying fairness from human and computer players. They rejected more offers in the human than the computer condition, an effect of social context associated with higher overall levels of dopamine but not serotonin. Regardless of the social context, relative changes in dopamine tracked trial-by-trial changes in offer value-akin to reward prediction errors-whereas serotonin tracked the current offer value. These results show that dopamine and serotonin fluctuations in one of the basal ganglia's main output structures reflect distinct social context and value signals.


Assuntos
Dopamina , Doença de Parkinson , Serotonina , Substância Negra , Humanos , Serotonina/metabolismo , Dopamina/metabolismo , Substância Negra/metabolismo , Masculino , Feminino , Doença de Parkinson/metabolismo , Pessoa de Meia-Idade , Idoso , Comportamento Social , Recompensa
5.
medRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370629

RESUMO

Timing behaviour and the perception of time are fundamental to cognitive and emotional processes in humans. In non-human model organisms, the neuromodulator dopamine has been associated with variations in timing behaviour, but the connection between variations in dopamine levels and the human experience of time has not been directly assessed. Here, we report how dopamine levels in human striatum, measured with sub-second temporal resolution during awake deep brain stimulation surgery, relate to participants' perceptual judgements of time intervals. Fast, phasic, dopaminergic signals were associated with underestimation of temporal intervals, whereas slower, tonic, decreases in dopamine were associated with poorer temporal precision. Our findings suggest a delicate and complex role for the dynamics and tone of dopaminergic signals in the conscious experience of time in humans.

6.
Sci Adv ; 9(48): eadi4927, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039368

RESUMO

In the mammalian brain, midbrain dopamine neuron activity is hypothesized to encode reward prediction errors that promote learning and guide behavior by causing rapid changes in dopamine levels in target brain regions. This hypothesis (and alternatives regarding dopamine's role in punishment-learning) has limited direct evidence in humans. We report intracranial, subsecond measurements of dopamine release in human striatum measured, while volunteers (i.e., patients undergoing deep brain stimulation surgery) performed a probabilistic reward and punishment learning choice task designed to test whether dopamine release encodes only reward prediction errors or whether dopamine release may also encode adaptive punishment learning signals. Results demonstrate that extracellular dopamine levels can encode both reward and punishment prediction errors within distinct time intervals via independent valence-specific pathways in the human brain.


Assuntos
Dopamina , Punição , Animais , Humanos , Dopamina/metabolismo , Recompensa , Aprendizagem/fisiologia , Encéfalo/metabolismo , Mamíferos/metabolismo
7.
Curr Biol ; 33(22): 5003-5010.e6, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37875110

RESUMO

The noradrenaline (NA) system is one of the brain's major neuromodulatory systems; it originates in a small midbrain nucleus, the locus coeruleus (LC), and projects widely throughout the brain.1,2 The LC-NA system is believed to regulate arousal and attention3,4 and is a pharmacological target in multiple clinical conditions.5,6,7 Yet our understanding of its role in health and disease has been impeded by a lack of direct recordings in humans. Here, we address this problem by showing that electrochemical estimates of sub-second NA dynamics can be obtained using clinical depth electrodes implanted for epilepsy monitoring. We made these recordings in the amygdala, an evolutionarily ancient structure that supports emotional processing8,9 and receives dense LC-NA projections,10 while patients (n = 3) performed a visual affective oddball task. The task was designed to induce different cognitive states, with the oddball stimuli involving emotionally evocative images,11 which varied in terms of arousal (low versus high) and valence (negative versus positive). Consistent with theory, the NA estimates tracked the emotional modulation of attention, with a stronger oddball response in a high-arousal state. Parallel estimates of pupil dilation, a common behavioral proxy for LC-NA activity,12 supported a hypothesis that pupil-NA coupling changes with cognitive state,13,14 with the pupil and NA estimates being positively correlated for oddball stimuli in a high-arousal but not a low-arousal state. Our study provides proof of concept that neuromodulator monitoring is now possible using depth electrodes in standard clinical use.


Assuntos
Atenção , Norepinefrina , Humanos , Atenção/fisiologia , Nível de Alerta/fisiologia , Tonsila do Cerebelo , Encéfalo , Locus Cerúleo/fisiologia , Pupila/fisiologia
8.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745618

RESUMO

Background: Impulse Control Disorder (ICD) in Parkinson's disease is a behavioral addiction arising secondary to dopaminergic therapies, most often dopamine receptor agonists. Prior research implicates changes in striatal function and heightened dopaminergic activity in the dorsal striatum of patients with ICD. However, this prior work does not possess the temporal resolution required to investigate dopaminergic signaling during real-time progression through various stages of decision-making involving anticipation and feedback. Methods: We recorded high-frequency (10Hz) measurements of extracellular dopamine in the striatum of patients with (N=3) and without (N=3) a history of ICD secondary to dopamine receptor agonist therapy for Parkinson's disease symptoms. These measurements were made using carbon fiber microelectrodes during awake DBS neurosurgery and while participants performed a sequential decision-making task involving risky investment decisions and real monetary gains and losses. Per clinical standard-of-care, participants withheld all dopaminergic medications prior to the procedure. Results: Patients with ICD invested significantly more money than patients without ICD. On each trial, patients with ICD made smaller adjustments to their investment levels compared to patients without ICD. In patients with ICD, dopamine levels rose or fell on sub-second timescales in anticipation of investment outcomes consistent with increased or decreased confidence in a positive outcome, respectively; dopamine levels in patients without ICD were significantly more stable during this phase. After outcome revelation, dopamine levels in patients with ICD rose significantly more than in inpatients without ICD for better-than-expected gains. For worse-than-expected losses, dopamine levels in patients with ICD remained level whereas dopamine levels in patients without ICD fell. Conclusion: We report significantly increased risky behavior and exacerbated phasic dopamine signaling, on sub-second timescales, anticipating and following the revelation of the outcomes of risky decisions in patients with ICD. Notably, these results were obtained when patients who had demonstrated ICD in the past but were, at the time of surgery, in an off-medication state. Thus, it is unclear whether observed signals reflect an inherent predisposition for ICD that was revealed when dopamine receptor agonists were introduced or whether these observations were caused by the introduction of dopamine receptor agonists and the patients having experienced ICD symptoms in the past. Regardless, future work investigating dopamine's role in human cognition, behavior, and disease should consider the signals this system generates on sub-second timescales.

9.
Parkinsonism Relat Disord ; 114: 105800, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37595329

RESUMO

Decreasing dopaminergic function is at the core of Parkinson's disease (PD) motor symptoms and changes in dopaminergic action are associated with many comorbid non-motor symptoms in PD. Notably, dopaminergic signaling in the striatum has been shown to play a critical role in the perception of time. We hypothesize that patients with PD perceive time differently and in accordance with their specific comorbid non-motor symptoms and clinical state. This means that individual differences in clinical symptoms may be reflected in individual differences in timing behavior. To test this hypothesis, we recruited patients with PD and compared individual differences in patients' clinical state with their ability to judge intervals of time ranging from 500 ms to 1100 ms while on and off their prescribed dopaminergic medications. We show that medication state (on vs. off medications) did not affect timing behavior, but individual differences in timing behavior are able to predict individual differences in comorbid non-motor symptoms, duration of PD diagnosis, and prescribed dopaminergic medications. We show that comorbid impulse control disorder is associated with temporal overestimation; depression is associated with decreased temporal accuracy; and increased PD duration and prescribed levodopa monotherapy are associated with reduced temporal precision and accuracy. Observed differences in time perception are consistent with hypothesized dopaminergic mechanisms thought to underlie the respective motor and non-motor symptoms in PD. In future work, time perception tasks may augment clinical diagnosis strategies, or help disentangle the neural and cognitive mechanisms underlying PD motor and non-motor symptom etiology.


Assuntos
Doença de Parkinson , Percepção do Tempo , Humanos , Doença de Parkinson/complicações , Individualidade , Dopamina , Levodopa/uso terapêutico
10.
bioRxiv ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36909605

RESUMO

Dopaminergic signaling in the striatum has been shown to play a critical role in the perception of time. Decreasing striatal dopamine efficacy is at the core of Parkinson's disease (PD) motor symptoms and changes in dopaminergic action have been associated with many comorbid non-motor symptoms in PD. We hypothesize that patients with PD perceive time differently and in accordance with their specific comorbid non-motor symptoms and clinical state. We recruited patients with PD and compared individual differences in patients' clinical features with their ability to judge millisecond to second intervals of time (500ms-1100ms) while on or off their prescribed dopaminergic medications. We show that individual differences in comorbid non-motor symptoms, PD duration, and prescribed dopaminergic pharmacotherapeutics account for individual differences in time perception performance. We report that comorbid impulse control disorder is associated with temporal overestimation; depression is associated with decreased temporal accuracy; and PD disease duration and prescribed levodopa monotherapy are associated with reduced temporal precision and accuracy. Observed differences in time perception are consistent with hypothesized dopaminergic mechanisms thought to underlie the respective motor and non-motor symptoms in PD, but also raise questions about specific dopaminergic mechanisms. In future work, time perception tasks like the one used here, may provide translational or reverse translational utility in investigations aimed at disentangling neural and cognitive systems underlying PD symptom etiology. One Sentence Summary: Quantitative characterization of time perception behavior reflects individual differences in Parkinson's disease motor and non-motor symptom clinical presentation that are consistent with hypothesized neural and cognitive mechanisms.

11.
bioRxiv ; 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36993384

RESUMO

How the human brain generates conscious phenomenal experience is a fundamental problem. In particular, it is unknown how variable and dynamic changes in subjective affect are driven by interactions with objective phenomena. We hypothesize a neurocomputational mechanism that generates valence-specific learning signals associated with 'what it is like' to be rewarded or punished. Our hypothesized model maintains a partition between appetitive and aversive information while generating independent and parallel reward and punishment learning signals. This valence-partitioned reinforcement learning (VPRL) model and its associated learning signals are shown to predict dynamic changes in 1) human choice behavior, 2) phenomenal subjective experience, and 3) BOLD-imaging responses that implicate a network of regions that process appetitive and aversive information that converge on the ventral striatum and ventromedial prefrontal cortex during moments of introspection. Our results demonstrate the utility of valence-partitioned reinforcement learning as a neurocomputational basis for investigating mechanisms that may drive conscious experience.

12.
Neurosurg Focus ; 54(2): E3, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36724520

RESUMO

OBJECTIVE: To the authors' knowledge, no data have been reported on dopamine fluctuations on subsecond timescales in humans with alcohol use disorder (AUD). In this study, dopamine release was monitored in 2 patients with and 2 without a history of AUD during a "sure bet or gamble" (SBORG) decision-making task to begin to characterize how subsecond dopamine responses to counterfactual information, related to psychological notions of regret and relief, in AUD may be altered. METHODS: Measurements of extracellular dopamine levels were made once every 100 msec using human voltammetric methods. Measurements were made in the caudate during deep brain stimulation electrode implantation surgeries (for treatment of movement disorders) in patients who did (AUD, n = 2) or did not (non-AUD, n = 2) have a history of AUD. Participants performed an SBORG decision-making task in which they made choices between sure bets and 50%-chance monetary gamble outcomes. RESULTS: Fast changes were found in dopamine levels that appear to be modulated by "what could have been" and by patients' AUD status. Positive counterfactual prediction errors (related to relief) differentiated patients with versus without a history of AUD. CONCLUSIONS: Dopaminergic encoding of counterfactual information appears to differ between patients with and without AUD. The current study has a major limitation of a limited sample size, but these data provide a rare insight into dopaminergic physiology during real-time decision-making in humans with an addiction disorder. The authors hope future work will expand the sample size and determine the generalizability of the current results.


Assuntos
Alcoolismo , Humanos , Alcoolismo/terapia , Dopamina , Emoções
13.
Front Psychiatry ; 13: 886297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339844

RESUMO

In the DSM-5, psychiatric diagnoses are made based on self-reported symptoms and clinician-identified signs. Though helpful in choosing potential interventions based on the available regimens, this conceptualization of psychiatric diseases can limit basic science investigation into their underlying causes. The reward prediction error (RPE) hypothesis of dopamine neuron function posits that phasic dopamine signals encode the difference between the rewards a person expects and experiences. The computational framework from which this hypothesis was derived, temporal difference reinforcement learning (TDRL), is largely focused on reward processing rather than punishment learning. Many psychiatric disorders are characterized by aberrant behaviors, expectations, reward processing, and hypothesized dopaminergic signaling, but also characterized by suffering and the inability to change one's behavior despite negative consequences. In this review, we provide an overview of the RPE theory of phasic dopamine neuron activity and review the gains that have been made through the use of computational reinforcement learning theory as a framework for understanding changes in reward processing. The relative dearth of explicit accounts of punishment learning in computational reinforcement learning theory and its application in neuroscience is highlighted as a significant gap in current computational psychiatric research. Four disorders comprise the main focus of this review: two disorders of traditionally hypothesized hyperdopaminergic function, addiction and schizophrenia, followed by two disorders of traditionally hypothesized hypodopaminergic function, depression and post-traumatic stress disorder (PTSD). Insights gained from a reward processing based reinforcement learning framework about underlying dopaminergic mechanisms and the role of punishment learning (when available) are explored in each disorder. Concluding remarks focus on the future directions required to characterize neuropsychiatric disorders with a hypothesized cause of underlying dopaminergic transmission.

14.
Ann Appl Stat ; 16(4): 2145-2165, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36274786

RESUMO

We propose the "study strap ensemble", which combines advantages of two common approaches to fitting prediction models when multiple training datasets ("studies") are available: pooling studies and fitting one model versus averaging predictions from multiple models each fit to individual studies. The study strap ensemble fits models to bootstrapped datasets, or "pseudo-studies." These are generated by resampling from multiple studies with a hierarchical resampling scheme that generalizes the randomized cluster bootstrap. The study strap is controlled by a tuning parameter that determines the proportion of observations to draw from each study. When the parameter is set to its lowest value, each pseudo-study is resampled from only a single study. When it is high, the study strap ignores the multi-study structure and generates pseudo-studies by merging the datasets and drawing observations like a standard bootstrap. We empirically show the optimal tuning value often lies in between, and prove that special cases of the study strap draw the merged dataset and the set of original studies as pseudo-studies. We extend the study strap approach with an ensemble weighting scheme that utilizes information in the distribution of the covariates of the test dataset. Our work is motivated by neuroscience experiments using real-time neurochemical sensing during awake behavior in humans. Current techniques to perform this kind of research require measurements from an electrode placed in the brain during awake neurosurgery and rely on prediction models to estimate neurotransmitter concentrations from the electrical measurements recorded by the electrode. These models are trained by combining multiple datasets that are collected in vitro under heterogeneous conditions in order to promote accuracy of the models when applied to data collected in the brain. A prevailing challenge is deciding how to combine studies or ensemble models trained on different studies to enhance model generalizability. Our methods produce marked improvements in simulations and in this application. All methods are available in the studyStrap CRAN package.

15.
PLoS One ; 17(8): e0271348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35994460

RESUMO

INTRODUCTION: Currently, sub-second monitoring of neurotransmitter release in humans can only be performed during standard of care invasive procedures like DBS electrode implantation. The procedure requires acute insertion of a research probe and additional time in surgery, which may increase infection risk. We sought to determine the impact of our research procedure, particularly the extended time in surgery, on infection risk. METHODS: We screened 602 patients who had one or more procedure codes documented for DBS electrode implantation, generator placement, programming, or revision for any reason performed at Wake Forest Baptist Medical Center between January 2011 through October 2020 using International Classification of Diseases (ICD) codes for infection. During this period, 116 patients included an IRB approved 30-minute research protocol, during the Phase 1 DBS electrode implantation surgery, to monitor sub-second neurotransmitter release. We used Fisher's Exact test (FET) to determine if there was a significant change in the infection rate following DBS electrode implantation procedures that included, versus those that did not include, the neurotransmitter monitoring research protocol. RESULTS: Within 30-days following DBS electrode implantation, infection was observed in 1 (0.21%) out of 486 patients that did not participate in the research procedure and 2 (1.72%) of the 116 patients that did participate in the research procedure. Notably, all types of infection observed were typical of those expected for DBS electrode implantation. CONCLUSION: Infection rates are not statistically different across research and non-research groups within 30-days following the research procedure (1.72% vs. 0.21%; p = 0.0966, FET). Our results demonstrate that the research procedures used for sub-second monitoring of neurotransmitter release in humans can be performed without increasing the rate of infection.


Assuntos
Estimulação Encefálica Profunda , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/métodos , Eletrodos Implantados/efeitos adversos , Humanos , Neurotransmissores
16.
Neuron ; 108(5): 999-1010.e6, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33049201

RESUMO

Recent animal research indicates that dopamine and serotonin, neuromodulators traditionally linked to appetitive and aversive processes, are also involved in sensory inference and decisions based on such inference. We tested this hypothesis in humans by monitoring sub-second striatal dopamine and serotonin signaling during a visual motion discrimination task that separates sensory uncertainty from decision difficulty in a factorial design. Caudate nucleus recordings (n = 4) revealed multi-scale encoding: in three participants, serotonin tracked sensory uncertainty, and, in one participant, both dopamine and serotonin tracked deviations from expected trial transitions within our factorial design. Putamen recordings (n = 1) supported a cognition-action separation between caudate nucleus and putamen-a striatal sub-division unique to primates-with both dopamine and serotonin tracking decision times. These first-of-their-kind observations in the human brain reveal a role for sub-second dopamine and serotonin signaling in non-reward-based aspects of cognition and action.


Assuntos
Corpo Estriado/metabolismo , Tomada de Decisões/fisiologia , Dopamina/metabolismo , Serotonina/metabolismo , Transdução de Sinais/fisiologia , Percepção Visual/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa/métodos
17.
Biol Psychol ; 145: 174-184, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31051206

RESUMO

From an early age, individuals with autism spectrum disorder (ASD) spend less time engaged in social interaction compared to typically developing peers (TD). One reason behind this behavior may be that the brains of children diagnosed with ASD do not attribute enough value to potential social exchanges as compared to the brains of typically developing children; thus, potential social exchanges are avoided because other environmental stimuli are more highly valued by default. Neurobiological investigations into the mechanisms underlying value-based decision-making has shown that the ventral medial prefrontal cortex (vmPFC) is critical for encoding the expected outcome value of different actions corresponding to distinct environmental cues. Here, we tested the hypothesis that the responsiveness of the vmPFC in children diagnosed with ASD (compared to TD controls) is diminished for visual cues that represent highly valued social interaction. Using a passive picture viewing task and functional magnetic resonance imaging (fMRI) we measured the response of an a priori defined region of interest in the vmPFC in children diagnosed with ASD and an age-matched TD cohort. We show that the average response of the vmPFC is significantly diminished in the ASD group. Further, we demonstrate that a single-stimulus and less than 30 s of fMRI data are sufficient to differentiate the ASD and TD cohorts. These findings are consistent with the hypothesis that the brains of children with ASD do not encode the value of social exchange in the same manner as TD children. The latter finding suggests the possibility of utilizing single-stimulus fMRI as a potential biologically based diagnostic tool to augment traditional clinical approaches.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Relações Interpessoais , Imageamento por Ressonância Magnética , Comportamento Social , Transtorno do Espectro Autista/psicologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Criança , Desenvolvimento Infantil , Feminino , Humanos , Masculino , Estimulação Luminosa , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiopatologia
18.
Neuropsychopharmacology ; 43(6): 1425-1435, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29297512

RESUMO

The role of serotonin in human brain function remains elusive due, at least in part, to our inability to measure rapidly the local concentration of this neurotransmitter. We used fast-scan cyclic voltammetry to infer serotonergic signaling from the striatum of 14 brains of human patients with Parkinson's disease. Here we report these novel measurements and show that they correlate with outcomes and decisions in a sequential investment game. We find that serotonergic concentrations transiently increase as a whole following negative reward prediction errors, while reversing when counterfactual losses predominate. This provides initial evidence that the serotonergic system acts as an opponent to dopamine signaling, as anticipated by theoretical models. Serotonin transients on one trial were also associated with actions on the next trial in a manner that correlated with decreased exposure to poor outcomes. Thus, the fluctuations observed for serotonin appear to correlate with the inhibition of over-reactions and promote persistence of ongoing strategies in the face of short-term environmental changes. Together these findings elucidate a role for serotonin in the striatum, suggesting it encodes a protective action strategy that mitigates risk and modulates choice selection particularly following negative environmental events.


Assuntos
Corpo Estriado/metabolismo , Tomada de Decisões/fisiologia , Retroalimentação Psicológica/fisiologia , Neuroproteção/fisiologia , Doença de Parkinson/metabolismo , Serotonina/metabolismo , Antecipação Psicológica/fisiologia , Aprendizagem da Esquiva/fisiologia , Dopamina/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/psicologia , Recompensa
19.
Artigo em Inglês | MEDLINE | ID: mdl-31023828

RESUMO

We summarize a new approach to neuromodulator detection that provides colocalized detection of dopamine, serotonin, and norepinephrine at subsecond timescales and promises to provide submillisecond estimates of the same. The methodology, elastic net electrochemistry, is used to estimate dopamine and serotonin in the striatum of conscious human subjects during active decision-making. We show a proof-of-principle example of the same method working on commercially available depth electrodes in common use for epilepsy monitoring and neurosurgical planning in humans, which further promises to make such electrodes sources of fast neuromodulator information never before available in human subjects. We discuss the implications of this methodology for making direct tests in humans of the computations carried by these three important neuromodulatory systems. The methods also promise great utility in model organisms, but this chapter focuses on the possibilities for human use.

20.
Artigo em Inglês | MEDLINE | ID: mdl-27574306

RESUMO

Activity in midbrain dopamine neurons modulates the release of dopamine in terminal structures including the striatum, and controls reward-dependent valuation and choice. This fluctuating release of dopamine is thought to encode reward prediction error (RPE) signals and other value-related information crucial to decision-making, and such models have been used to track prediction error signals in the striatum as encoded by BOLD signals. However, until recently there have been no comparisons of BOLD responses and dopamine responses except for one clear correlation of these two signals in rodents. No such comparisons have been made in humans. Here, we report on the connection between the RPE-related BOLD signal recorded in one group of subjects carrying out an investment task, and the corresponding dopamine signal recorded directly using fast-scan cyclic voltammetry in a separate group of Parkinson's disease patients undergoing DBS surgery while performing the same task. The data display some correspondence between the signal types; however, there is not a one-to-one relationship. Further work is necessary to quantify the relationship between dopamine release, the BOLD signal and the computational models that have guided our understanding of both at the level of the striatum.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Mesencéfalo/diagnóstico por imagem , Neuroimagem/métodos , Doença de Parkinson/metabolismo , Recompensa , Adulto , Idoso , Comportamento de Escolha , Neurônios Dopaminérgicos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimagem/instrumentação , Oxigênio/sangue , Doença de Parkinson/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...