Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 4(1): ycae052, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38707841

RESUMO

Plant roots secrete various metabolites, including plant specialized metabolites, into the rhizosphere, and shape the rhizosphere microbiome, which is crucial for the plant health and growth. Isoflavones are major plant specialized metabolites found in legume plants, and are involved in interactions with soil microorganisms as initiation signals in rhizobial symbiosis and as modulators of the legume root microbiota. However, it remains largely unknown the molecular basis underlying the isoflavone-mediated interkingdom interactions in the legume rhizosphere. Here, we isolated Variovorax sp. strain V35, a member of the Comamonadaceae that harbors isoflavone-degrading activity, from soybean roots and discovered a gene cluster responsible for isoflavone degradation named ifc. The characterization of ifc mutants and heterologously expressed Ifc enzymes revealed that isoflavones undergo oxidative catabolism, which is different from the reductive metabolic pathways observed in gut microbiota. We further demonstrated that the ifc genes are frequently found in bacterial strains isolated from legume plants, including mutualistic rhizobia, and contribute to the detoxification of the antibacterial activity of isoflavones. Taken together, our findings reveal an isoflavone catabolism gene cluster in the soybean root microbiota, providing molecular insights into isoflavone-mediated legume-microbiota interactions.

2.
Front Immunol ; 15: 1374425, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745644

RESUMO

Various gut bacteria, including Lactobacillus plantarum, possess several enzymes that produce hydroxy fatty acids (FAs), oxo FAs, conjugated FAs, and partially saturated FAs from polyunsaturated FAs as secondary metabolites. Among these derivatives, we identified 10-oxo-cis-6,trans-11-octadecadienoic acid (γKetoC), a γ-linolenic acid (GLA)-derived enon FA, as the most effective immunomodulator, which inhibited the antigen-induced immunoactivation and LPS-induced production of inflammatory cytokines. The treatment with γKetoC significantly suppressed proliferation of CD4+ T cells, LPS-induced activation of bone marrow-derived dendritic cells (BMDCs), and LPS-induced IL-6 release from peritoneal cells, splenocytes, and CD11c+ cells isolated from the spleen. γKetoC also inhibited the release of inflammatory cytokines from BMDCs stimulated with poly-I:C, R-848, or CpG. Further in vitro experiments using an agonist of GPR40/120 suggested the involvement of these GPCRs in the effects of γKetoC on DCs. We also found that γKetoC stimulated the NRF2 pathway in DCs, and the suppressive effects of γKetoC and agonist of GPR40/120 on the release of IL-6 and IL-12 were reduced in Nrf2-/- BMDCs. We evaluated the role of NRF2 in the anti-inflammatory effects of γKetoC in a dextran sodium sulfate-induced colitis model. The oral administration of γKetoC significantly reduced body weight loss, improved stool scores, and attenuated atrophy of the colon, in wild-type C57BL/6 and Nrf2+/- mice with colitis. In contrast, the pathology of colitis was deteriorated in Nrf2-/- mice even with the administration of γKetoC. Collectively, the present results demonstrated the involvement of the NRF2 pathway and GPCRs in γKetoC-mediated anti-inflammatory responses.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Camundongos Knockout , Citocinas/metabolismo , Modelos Animais de Doenças , Sulfato de Dextrana , Ácidos Oleicos/farmacologia , Lactobacillus plantarum , Colite/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/efeitos dos fármacos , Masculino
3.
Sci Rep ; 13(1): 18983, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923895

RESUMO

The antidiabetic drug pioglitazone ameliorates insulin resistance by activating the transcription factor PPARγ. In addition to its blood glucose-lowering action, pioglitazone exerts pleiotropic effects including amelioration of nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). The mechanism by which pioglitazone achieves this latter effect has remained unclear, however. We here show that pioglitazone administration increases the amount of linoleic acid (LA) metabolites in adipose tissue of KK-Ay mice. These metabolites are produced by lactic acid bacteria in the gut, and pioglitazone also increased the fraction of Lactobacillus in the gut microbiota. Administration of the LA metabolite HYA (10-hydroxy-cis-12-octadecenoic acid) to C57BL/6 J mice fed a high-fat diet improved liver histology including steatosis, inflammatory cell infiltration, and fibrosis. Gene ontology analysis of RNA-sequencing data for the liver revealed that the top category for genes downregulated by HYA treatment was related to extracellular matrix, and the expression of individual genes related to fibrosis was confirmed to be attenuated by HYA treatment. Mechanistically, HYA suppressed TGF-ß-induced Smad3 phosphorylation and fibrosis-related gene expression in human hepatic stellate cells (LX-2). Our results implicate LA metabolites in the mechanism by which pioglitazone ameliorates liver fibrosis, and they suggest that HYA is a potential therapeutic for NAFLD/NASH.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Pioglitazona/farmacologia , Ácido Linoleico/metabolismo , Células Estreladas do Fígado/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Cirrose Hepática/patologia , Fibrose , Dieta Hiperlipídica/efeitos adversos , Fator de Crescimento Transformador beta/metabolismo
4.
Biosci Biotechnol Biochem ; 87(8): 925-932, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37156521

RESUMO

PsADH, an alcohol dehydrogenase originating in Pantoea sp. was characterized and found to convert a broad variety of fatty alcohols into their corresponding aldehydes, the substrates of alkane biosynthesis. By coupling PsADH with NpAD, a cyanobacterial aldehyde-deformylating oxygenase, and by optimizing the conditions of the enzyme-catalyzed reactions, we achieved a 52% conversion of 1-tetradecanol to tridecane. We further applied this system to generate alkanes ranging from C5-17. These alkanes can be used as biofuels, suggesting that introducing a suitable alcohol dehydrogenase is an effective strategy to utilize fatty alcohols for alkane production.


Assuntos
Aldeídos , Oxigenases , Álcool Desidrogenase , Álcoois Graxos , Alcanos , Catálise , Álcoois
5.
Atherosclerosis ; 375: 1-8, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37216727

RESUMO

BACKGROUND AND AIMS: Studies have recently revealed the linoleic acid metabolic pathway of Lactobacillus plantarum, the representative gut bacterium in human gastrointestinal tract, and the anti-inflammatory effects of metabolites in this pathway. However, no clinical trials have evaluated the association between these metabolites and revascularization in patients who underwent percutaneous coronary intervention (PCI). METHODS: We retrospectively reviewed patients who underwent PCI with subsequent revascularization or coronary angiography (CAG) without revascularization. Patients with frozen blood samples at the index PCI and revascularization or follow-up CAG were enrolled. RESULTS: Among 701 consecutive patients who underwent PCI, we enrolled 53 patients who underwent subsequent revascularization and 161 patients who underwent follow-up CAG without revascularization. Patients who underwent revascularization showed significantly lower plasma 10-oxo-octadecanoic acid (KetoB) levels (720.5 [551.6-876.5] vs. 818.4 [641.1-1103.6 pg/mL]; p = 0.01) at index PCI. Multivariate logistic regression analysis revealed that decreased plasma KetoB levels at the index PCI were independently associated with subsequent revascularization after PCI (odds ratio; 0.90 per 100 pg/mL increase, 95% confidence interval; 0.82-0.98). Additionally, in vitro experiments showed that the addition of purified KetoB suppressed the mRNA levels of IL-6 and IL-1ß in macrophages and IL-1ß mRNA in neutrophils. CONCLUSIONS: Plasma KetoB level at index PCI was independently associated with subsequent revascularization after PCI, and KetoB could act as an anti-inflammatory lipid mediator in macrophages and neutrophils. The assessment of gut microbiome-derived metabolites may help predict revascularization after PCI.


Assuntos
Microbioma Gastrointestinal , Intervenção Coronária Percutânea , Humanos , Intervenção Coronária Percutânea/efeitos adversos , Ponte de Artéria Coronária , Estudos Retrospectivos , Fatores de Risco , Resultado do Tratamento , Lipídeos
6.
Biosci Biotechnol Biochem ; 87(6): 663-671, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36941129

RESUMO

α-Tomatine is a steroidal glycoalkaloid in tomato plants and degrades with ripening. The aglycone form, tomatidine, is reported to have beneficial effects. In this study, the ability of food-related microorganisms to produce tomatidine from α-tomatine was evaluated. A total of 11 strains of Aspergillus species belonging to the section Nigri exhibited tomatinase activity, and Aspergillus luchuensis JCM 22302 was selected for optimization due to its high activity in its mycelia, conidia, and non-mycotoxin-producing property. Next, using A. luchuensis JCM22302 conidia, the highest yield was obtained in a 24-h reaction with 50 m m of acetic acid-sodium acetate buffer (pH 5.5) at 37 °C. Similar to the tomato pathogen Fusarium oxysporum f. lyceopersici, the time course analysis suggested that A. luchuensis JCM 22302 removed the entire sugar moiety in a single step. Future research will focus on utilizing conidia for large-scale tomatidine production because of their high tolerance and manageability.


Assuntos
Aspergillus , Tomatina , Tomatina/química , Tomatina/metabolismo , Aspergillus/metabolismo
7.
Appl Environ Microbiol ; 88(23): e0126422, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36416567

RESUMO

Alkanes produced by microorganisms are expected to be an alternative to fossil fuels as an energy source. Microbial synthesis of alkanes involves the formation of fatty aldehydes via fatty acyl coenzyme A (acyl-CoA) intermediates derived from fatty acid metabolism, followed by aldehyde decarbonylation to generate alkanes. Advancements in metabolic engineering have enabled the construction of such pathways in various microorganisms, including Escherichia coli. However, endogenous aldehyde reductases in the host microorganisms are highly active in converting fatty aldehydes to fatty alcohols, limiting the substrate pool for alkane production. To reuse the alcohol by-product, a screening of fatty alcohol-assimilating microorganisms was conducted, and a bacterial strain, Pantoea sp. strain 7-4, was found to convert 1-tetradecanol to tetradecanal. From this strain, an alcohol dehydrogenase, PsADH, was purified and found to be involved in 1-tetradecanol-oxidizing reaction. Subsequent heterologous expression of the PsADH gene in E. coli was conducted, and recombinant PsADH was purified for a series of biochemical characterizations, including cofactors, optimal reaction conditions, and kinetic parameters. Furthermore, direct alkane production from alcohol was achieved in E. coli by coexpressing PsADH with a cyanobacterial aldehyde-deformylating oxygenase and a reducing system, including ferredoxin and ferredoxin reductase, from Nostoc punctiforme PCC73102. The alcohol-aldehyde-alkane synthetic route established in this study will provide a new approach to utilizing fatty alcohols for the production of alkane biofuel. IMPORTANCE Alcohol dehydrogenases are a group of enzymes found in many organisms. Unfortunately, studies on these enzymes mainly focus on their activities toward short-chain alcohols. In this study, we discovered an alcohol dehydrogenase, PsADH, from the bacterium Pantoea sp. 7-4, which can oxidize 1-tetradecanol to tetradecanal. The medium-chain aldehyde products generated by this enzyme can serve as the substrate of aldehyde-deformylating oxygenase to produce alkanes. The enzyme found in this study can be applied to the biosynthetic pathway involving the formation of medium-chain aldehydes to produce alkanes and other valuable compounds.


Assuntos
Álcool Desidrogenase , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Ferredoxinas/metabolismo , Aldeídos/metabolismo , Álcoois/metabolismo , Alcanos/metabolismo , Ácidos Graxos/metabolismo , Álcoois Graxos/metabolismo , Oxigenases/metabolismo
8.
Atherosclerosis ; 358: 1-11, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36049289

RESUMO

BACKGROUND AND AIMS: Gut microbial lipopolysaccharide (LPS) induces endotoxemia, an independent risk factor for cardiovascular disease (CVD). However, no studies have demonstrated how structural differences in each bacterial LPS contribute to endotoxemia. Here, we investigated the effects of different acyl chains in the lipid A moiety of LPS on endotoxemia and the subsequent immune response and atherosclerotic plaque formation. METHODS: Apoe-/- mice were intraperitoneally administered 2 mg/kg of Escherichia coli-derived LPS (E. LPS, as a representative of hexa-acylated lipid A), Bacteroides-derived LPS (B. LPS, as a representative of penta- or tetra-acylated lipid A), or saline (control) once a week, six times. An immunohistological assessment was performed on plaque sections. RESULTS: E. LPS administration induced endotoxemia, but B. LPS and saline did not. In E. LPS-treated mice, total plaque areas in the aortic root were significantly increased, and neutrophil accumulation and increased formation of neutrophil extracellular traps (NETs) were observed at the plaque lesions, but not in B. LPS-treated mice. A single dose of E. LPS significantly increased the accumulation of neutrophils in plaque lesions on day 3, and NET formation on day 7. E. LPS also increased interleukin-1 beta (IL-1ß) production in plaque lesions on day 7. Furthermore, NET formation and IL-1ß production were also observed in human coronary plaques. CONCLUSIONS: We identified a previously unknown link between structural differences in LPS and atherosclerosis. Lowering microbial LPS activity may reduce NET formation in plaques and prevent CVD progression.


Assuntos
Aterosclerose , Endotoxemia , Placa Aterosclerótica , Animais , Apolipoproteínas E , Aterosclerose/patologia , Endotoxemia/induzido quimicamente , Humanos , Interleucina-1beta/farmacologia , Lipídeo A/farmacologia , Lipídeo A/uso terapêutico , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Placa Aterosclerótica/patologia
9.
J Biosci Bioeng ; 134(5): 424-431, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36137895

RESUMO

To produce tomato juice with health-promoting functions, lactic acid bacteria (LAB) capable of converting l-glutamic acid in tomatoes into γ-aminobutyric acid (GABA) was screened from LAB stocks isolated from Japanese pickles. Lactiplantibacillus plantarum KB1253 was selected as the highest GABA producer among 74 strains of LAB stocks. gad gene expression and glutamic acid decarboxylation activity increased at low pH (3.0-3.5), whereas the growth decreased. Under optimal reaction conditions using resting cells as catalysts, this strain produced 245.8 ± 3.4 mM GABA. Furthermore, this strain produced 41.0 ± 1.1 mM GABA from l-glutamic acid in tomato juice under optimal fermentation conditions (pH 4.0, 20°Bx). This study may provide the basis for developing health-promoting functional foods rich in GABA from tomatoes and other agricultural products.


Assuntos
Lactobacillales , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Ácido Glutâmico/metabolismo , Ácido gama-Aminobutírico/metabolismo , Fermentação , Lactobacillales/metabolismo
10.
Cell Rep ; 40(11): 111332, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36103838

RESUMO

Clostridioides difficile causes nosocomial antibiotic-associated diarrhea on a global scale. Susceptibility to C. difficile infection (CDI) is influenced by the composition and metabolism of gut microbiota, which in turn are affected by diet. However, the mechanism underlying the interplay between diet and gut microbiota that modulates susceptibility to CDI remains unclear. Here, we show that a soy protein diet increases the mortality of antibiotic-treated, C. difficile-infected mice while also enhancing the intestinal levels of amino acids (aas) and relative abundance of Lactobacillus genus. Indeed, Ligilactobacillus murinus-mediated fermentation of soy protein results in the generation of aas, thereby promoting C. difficile growth, and the process involves the anchored cell wall proteinase PrtP. Thus, mutual interaction between dietary protein and the gut microbiota is a critical factor affecting host susceptibility to CDI, suggesting that dietary protein sources can be an important determinant in controlling the disease.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Animais , Antibacterianos , Proteínas Alimentares , Camundongos , Proteínas de Soja
11.
J Biol Chem ; 298(11): 102534, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162507

RESUMO

Gut microbiota regulate physiological functions in various hosts, such as energy metabolism and immunity. Lactic acid bacteria, including Lactobacillus plantarum, have a specific polyunsaturated fatty acid saturation metabolism that generates multiple fatty acid species, such as hydroxy fatty acids, oxo fatty acids, conjugated fatty acids, and trans-fatty acids. How these bacterial metabolites impact host physiology is not fully understood. Here, we investigated the ligand activity of lactic acid bacteria-produced fatty acids in relation to nuclear hormone receptors expressed in the small intestine. Our reporter assays revealed two bacterial metabolites of γ-linolenic acid (GLA), 13-hydroxy-cis-6,cis-9-octadecadienoic acid (γHYD), and 13-oxo-cis-6,cis-9-octadecadienoic acid (γKetoD) activated peroxisome proliferator-activated receptor delta (PPARδ) more potently than GLA. We demonstrate that both γHYD and γKetoD bound directly to the ligand-binding domain of human PPARδ. A docking simulation indicated that four polar residues (T289, H323, H449, and Y473) of PPARδ donate hydrogen bonds to these fatty acids. Interestingly, T289 does not donate a hydrogen bond to GLA, suggesting that bacterial modification of GLA introducing hydroxy and oxo group determines ligand selectivity. In human intestinal organoids, we determined γHYD and γKetoD increased the expression of PPARδ target genes, enhanced fatty acid ß-oxidation, and reduced intracellular triglyceride accumulation. These findings suggest that γHYD and γKetoD, which gut lactic acid bacteria could generate, are naturally occurring PPARδ ligands in the intestinal tract and may improve lipid metabolism in the human intestine.


Assuntos
Intestino Delgado , Lactobacillales , PPAR delta , Ácido gama-Linolênico , Humanos , Ácido gama-Linolênico/metabolismo , Lactobacillales/metabolismo , Ligantes , Organoides/metabolismo , PPAR delta/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia
12.
J Biosci Bioeng ; 134(3): 213-219, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35864060

RESUMO

Enzymatic glycosylation is an industrially useful technique for improving the properties of compounds with hydroxy groups, and the biological activities of the resulting glycosides differ depending on the glycosylation position. Therefore, regioselective glycosyltransferases are required for precise synthesis of glycosides. We found that Rhizobium pusense JCM 16209T could catalyze the regioselective glycosylation of resveratrol. To identify the regioselective glycosyltransferase, two α-glucosidases of R. pusense JCM 16209T (RpG I and RpG II) were cloned and expressed in Escherichia coli. The molecular mass of purified recombinant RpG I and II was estimated to be 60 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). RpG I showed strong glycosylation activity toward resveratrol with 4'-selectivity of 98.3%. The enzyme activity was maximized at pH 8.0 and 50 °C, and enhanced in the presence of Cs+ and Li+ ions. The maximum molar yield of resveratrol 4'-O-α-glucoside from resveratrol reached 41.6% at 30 min, and the concentration of the product was 2.08 mmol L-1. Glycosylation activity was observed toward resveratrol as well as toward caffeic acid, ferulic acid, 6-gingerol, flavonoid, and isoflavonoid compounds with high regioselectivity, indicating that RpG I could glycosylate a wide range of substrates. To the best of our knowledge, there are few reports on microbial glycosyltransferases that are useful for regioselective glycosylation. This research could be the first step toward developing technologies for the precise synthesis of glycosides.


Assuntos
Glucosídeos , Glicosiltransferases , Escherichia coli/genética , Glucosídeos/química , Glicosídeos , Glicosiltransferases/genética , Resveratrol , Rhizobium
13.
Biosci Biotechnol Biochem ; 86(10): 1467-1475, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-35904311

RESUMO

This study investigated different gut bacteria in an anaerobic environment to identify specific candidates that could transform astragaloside IV (AIV) to cycloastragenol (CA). Two representative gut microbes, lactic acid bacteria (LAB) and bifidobacteria, could metabolize AIV to CA. Multiple screenings showed two metabolic pathways to metabolize AIV in two groups of bacteria. LAB metabolized AIV initiated by removing the C-6 glucose, whereas bifidobacteria indicated the initial removal of C-3 xylose. The final products differed between the two groups as bifidobacteria showed the production of CA, whereas LAB demonstrated preferential production of 20R, 24S-epoxy-6α, -16ß, -25-trihydroxy-9, -19-cycloartan-3-one (CA-2H).


Assuntos
Bifidobacterium , Lactobacillales , Bactérias/metabolismo , Glucose/metabolismo , Humanos , Sapogeninas , Saponinas , Triterpenos , Xilose/metabolismo
14.
J Biosci Bioeng ; 133(5): 405-413, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35249828

RESUMO

Lipid engineering related to biological functions has made remarkable progress in the fields of microbial production of functional lipids, metabolic engineering of microorganisms, elucidation of physiological functions of rare lipids, lipid-related enzyme engineering, and lipid analysis techniques. Various rare lipids are produced by utilizing microorganisms and their enzymes. It is also becoming clear that the rare lipids produced by intestinal bacteria contribute significantly to human health. Technological advances related to identification of lipid structures and quantification of lipids have led to such discoveries in the field of lipid engineering. This article reviews the latest findings that are attracting attention in the field of lipid engineering related to biological functions.


Assuntos
Lipídeos , Engenharia Metabólica , Humanos , Engenharia Metabólica/métodos
15.
Mucosal Immunol ; 15(2): 289-300, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35013573

RESUMO

Dietary ω3 fatty acids have important health benefits and exert their potent bioactivity through conversion to lipid mediators. Here, we demonstrate that microbiota play an essential role in the body's use of dietary lipids for the control of inflammatory diseases. We found that amounts of 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-12-cis-15-octadecadienoic acid (αKetoA) increased in the feces and serum of specific-pathogen-free, but not germ-free, mice when they were maintained on a linseed oil diet, which is high in α-linolenic acid. Intake of αKetoA, but not αHYA, exerted anti-inflammatory properties through a peroxisome proliferator-activated receptor (PPAR)γ-dependent pathway and ameliorated hapten-induced contact hypersensitivity by inhibiting the development of inducible skin-associated lymphoid tissue through suppression of chemokine secretion from macrophages and inhibition of NF-κB activation in mice and cynomolgus macaques. Administering αKetoA also improved diabetic glucose intolerance by inhibiting adipose tissue inflammation and fibrosis through decreased macrophage infiltration in adipose tissues and altering macrophage M1/M2 polarization in mice fed a high-fat diet. These results collectively indicate that αKetoA is a novel postbiotic derived from α-linolenic acid, which controls macrophage-associated inflammatory diseases and may have potential for developing therapeutic drugs as well as probiotic food products.


Assuntos
Dieta Hiperlipídica , Macrófagos , Tecido Adiposo , Animais , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Macaca fascicularis/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo
16.
Food Chem ; 370: 130987, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34536779

RESUMO

Hyperspectral imagery was applied to estimating non-galloyl (EC, EGC) and galloyl (ECG, EGCG) types of catechins in new shoots of green tea. Partial least squares regression models were developed to consider the effects of commercial fertilizer (CF) and organic fertilizer (OF). The models could explain each type of catechin with a precision of more than 0.79, with a few exceptions. When the CF model was applied to the OF hyperspectral reflectance and the OF model was applied to the CF hyperspectral reflectance for mutual prediction, the prediction accuracy was better with the OF models than CF models. The prediction models using both CF and OF data (hyperspectral reflectances, and concentrations of catechins) had a precision of more than 0.76 except for the non-galloyl-type catechins as a group and EGC alone. These results provide useful data for maintaining and improving the quality of green tea.


Assuntos
Catequina , Chá , Catequina/análise
17.
Chembiochem ; 23(4): e202100606, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34929055

RESUMO

Fatty acid hydratases (FAHs) catalyze regio- and stereo-selective hydration of unsaturated fatty acids to produce hydroxy fatty acids. Fatty acid hydratase-1 (FA-HY1) from Lactobacillus Acidophilus is the most promiscuous and regiodiverse FAH identified so far. Here, we engineered binding site residues of FA-HY1 (S393, S395, S218 and P380) by semi-rational protein engineering to alter regioselectivity. Although it was not possible to obtain a completely new type of regioselectivity with our mutant libraries, a significant shift of regioselectivity was observed towards cis-5, cis-8, cis-11, cis-14, cis-17-eicosapentaenoic acid (EPA). We identified mutants (S393/S395 mutants) with excellent regioselectivity, generating a single hydroxy fatty acid product from EPA (15-OH product), which is advantageous from application perspective. This result is impressive given that wild-type FA-HY1 produces a mixture of 12-OH and 15-OH products at 63 : 37 ratio (12-OH : 15-OH). Moreover, our results indicate that native FA-HY1 is at its limit in terms of promiscuity and regiospecificity, thus it may not be possible to diversify its product portfolio with active site engineering. This behavior of FA-HY1 is unlike its orthologue, fatty acid hydratase-2 (FA-HY2; 58 % sequence identity to FA-HY1), which has been shown earlier to exhibit significant promiscuity and regioselectivity changes by a few active site mutations. Our reverse engineering from FA-HY1 to FA-HY2 further demonstrates this conclusion.


Assuntos
Ácidos Graxos/biossíntese , Hidrolases/metabolismo , Engenharia de Proteínas , Ácidos Graxos/química , Hidrolases/genética , Lactobacillus acidophilus/enzimologia , Modelos Moleculares , Estrutura Molecular , Mutação , Estereoisomerismo
18.
Sci Rep ; 11(1): 23715, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887468

RESUMO

Cruciferous vegetables are rich sources of glucosinolates (GSLs). GSLs are degraded into isothiocyanates, which are potent anticarcinogens, by human gut bacteria. However, the mechanisms and enzymes involved in gut bacteria-mediated GSL metabolism are currently unclear. This study aimed to elucidate the enzymes involved in GSL metabolism in lactic acid bacteria, a type of gut bacteria. Companilactobacillus farciminis KB1089 was selected as a lactic acid bacteria strain model that metabolizes sinigrin, which is a GSL, into allylisothiocyanate. The sinigrin-metabolizing activity of this strain is induced under glucose-absent and sinigrin-present conditions. A quantitative comparative proteomic analysis was conducted and a total of 20 proteins that were specifically expressed in the induced cells were identified. Three candidate proteins, ß-glucoside-specific IIB, IIC, IIA phosphotransferase system (PTS) components (CfPttS), 6-phospho-ß-glucosidase (CfPbgS) and a hypothetical protein (CfNukS), were suspected to be involved in sinigrin-metabolism and were thus investigated further. We hypothesize a pathway for sinigrin degradation, wherein sinigrin is taken up and phosphorylated by CfPttS, and subsequently, the phosphorylated entity is degraded by CfPbgS. As expression of both pttS and pbgS genes clearly gave Escherichia coli host strain sinigrin converting activity, these genes were suggested to be responsible for sinigrin degradation. Furthermore, heterologous expression analysis using Lactococcus lactis suggested that CfPttS was important for sinigrin degradation and CfPbgS degraded phosphorylated sinigrin.


Assuntos
Metabolismo dos Carboidratos , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Glucosinolatos/metabolismo , Lactobacillus/enzimologia , Lactobacillus/genética , Família Multigênica , Proteoma , Proteômica/métodos , Metabolismo Secundário
19.
iScience ; 24(9): 102963, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34466786

RESUMO

Long-chain triglycerides (LCTs) intake strongly stimulates GIP secretion from enteroendocrine K cells and induces obesity and insulin resistance partly due to GIP hypersecretion. In this study, we found that medium-chain triglycerides (MCTs) inhibit GIP secretion after single LCT ingestion and clarified the mechanism underlying MCT-induced inhibition of GIP secretion. MCTs reduced the CCK effect after single LCT ingestion in wild-type (WT) mice, and a CCK agonist completely reversed MCT-induced inhibition of GIP secretion. In vitro studies showed that medium-chain fatty acids (MCFAs) inhibit long-chain fatty acid (LCFA)-stimulated CCK secretion and increase in intracellular Ca2+ concentrations through inhibition of GPR120 signaling. Long-term administration of MCTs reduced obesity and insulin resistance in high-LCT diet-fed WT mice, but not in high-LCT diet-fed GIP-knockout mice. Thus, MCT-induced inhibition of GIP hypersecretion reduces obesity and insulin resistance under high-LCT diet feeding condition.

20.
Sci Rep ; 11(1): 9749, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980877

RESUMO

Conjugated linoleic acid (CLA) is an isomer of linoleic acid (LA). The predominant dietary CLA is cis-9, trans-11-CLA (c-9, t-11-CLA), which constitutes up to ~ 90% of total CLA and is thought to be responsible for the positive health benefits associated with CLA. However, the effects of c-9, t-11-CLA on Alzheimer's disease (AD) remain to be elucidated. In this study, we investigated the effect of dietary intake of c-9, t-11-CLA on the pathogenesis of an AD mouse model. We found that c-9, t-11-CLA diet-fed AD model mice significantly exhibited (1) a decrease in amyloid-ß protein (Aß) levels in the hippocampus, (2) an increase in the number of microglia, and (3) an increase in the number of astrocytes expressing the anti-inflammatory cytokines, interleukin-10 and 19 (IL-10, IL-19), with no change in the total number of astrocytes. In addition, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatographic analysis revealed that the levels of lysophosphatidylcholine (LPC) containing c-9, t-11-CLA (CLA-LPC) and free c-9, t-11-CLA were significantly increased in the brain of c-9, t-11-CLA diet-fed mice. Thus, dietary c-9, t-11-CLA entered the brain and appeared to exhibit beneficial effects on AD, including a decrease in Aß levels and suppression of inflammation.


Assuntos
Doença de Alzheimer/dietoterapia , Peptídeos beta-Amiloides/metabolismo , Citocinas/metabolismo , Gorduras Insaturadas na Dieta/uso terapêutico , Ácidos Linoleicos Conjugados/uso terapêutico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/análise , Animais , Citocinas/análise , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...