Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 88(23): 237001, 2002 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-12059390

RESUMO

In order to elucidate the formation mechanism of unconventional arrangements of vortices in high- Tc superconducting thin films at an inclined magnetic field to the layer plane, we investigated the structures of vortex lines inside the films by Lorentz microscopy using our 1-MV field-emission electron microscope. Our observation results concluded that vortex lines are tilted to form linear chains in YBaCu3O(7,8). Vortex lines in the chain-lattice state in Bi2Sr2CaCu2O(8+delta), on the other hand, are all perpendicular to the layer plane, and therefore only vortices lined up along Josephson vortices form chains.

2.
Phys Rev Lett ; 88(10): 107001, 2002 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-11909381

RESUMO

The low-energy electronic structure of the nearly optimally doped trilayer cuprate superconductor Bi(2)Sr(2)Ca(2)Cu(3)O(10+delta) is investigated by angle-resolved photoemission spectroscopy. The normal state quasiparticle dispersion and Fermi surface and the superconducting d-wave gap and coherence peak are observed and compared with those of single- and bilayer systems. We find that both the superconducting gap magnitude and the relative coherence-peak intensity scale linearly with T(c) for various optimally doped materials.

3.
Science ; 294(5549): 2136-8, 2001 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-11739950

RESUMO

Superconductors can be used as dissipation-free electrical conductors as long as vortices are pinned. Vortices in high-temperature superconductors, however, behave anomalously, reflecting the anisotropic layered structure, and can move readily, thus preventing their practical use. Specifically, in a magnetic field tilted toward the layer plane, a special vortex arrangement (chain-lattice state) is formed. Real-time observation of vortices using high-resolution Lorentz microscopy revealed that the images of chain vortices begin to disappear at a much lower temperature, Td, than the superconducting transition temperature, Tc. We attribute this image disappearance to the longitudinal oscillation of vortices along the chains.

4.
Nature ; 412(6847): 620-2, 2001 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-11493915

RESUMO

Many superconductors do not entirely expel magnetic flux-rather, magnetic flux can penetrate the superconducting state in the form of vortices. Moving vortices create resistance, so they must be 'pinned' to permit dissipationless current flow. This is a particularly important issue for the high-transition-temperature superconductors, in which the vortices move very easily. Irradiation of superconducting samples by heavy ions produces columnar defects, which are considered to be the optimal pinning traps when the orientation of the column coincides with that of the vortex line. Although columnar defect pinning has been investigated using macroscopic techniques, it has hitherto been impossible to resolve individual vortices intersecting with individual defects. Here we achieve the resolution required to image vortex lines and columnar defects in Bi2Sr2CaCu2O8+delta (Bi-2212) thin films, using a 1-MV field-emission electron microscope. For our thin films, we find that the vortex lines at higher temperatures are trapped and oriented along tilted columnar defects, irrespective of the orientation of the applied magnetic field. At lower temperatures, however, vortex penetration always takes place perpendicular to the film plane, suggesting that intrinsic 'background' pinning in the material now dominates.

5.
Nature ; 412(6846): 510-4, 2001 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-11484045

RESUMO

Coupling between electrons and phonons (lattice vibrations) drives the formation of the electron pairs responsible for conventional superconductivity. The lack of direct evidence for electron-phonon coupling in the electron dynamics of the high-transition-temperature superconductors has driven an intensive search for an alternative mechanism. A coupling of an electron with a phonon would result in an abrupt change of its velocity and scattering rate near the phonon energy. Here we use angle-resolved photoemission spectroscopy to probe electron dynamics-velocity and scattering rate-for three different families of copper oxide superconductors. We see in all of these materials an abrupt change of electron velocity at 50-80 meV, which we cannot explain by any known process other than to invoke coupling with the phonons associated with the movement of the oxygen atoms. This suggests that electron-phonon coupling strongly influences the electron dynamics in the high-temperature superconductors, and must therefore be included in any microscopic theory of superconductivity.

6.
Phys Rev Lett ; 86(24): 5550-3, 2001 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-11415298

RESUMO

The electronic structure of heavily overdoped Bi(2)Sr(2)CaCu(2)O(8+delta) is investigated by angle-resolved photoemission spectroscopy. The long-sought bilayer band splitting in this two-plane system is observed in both normal and superconducting states, which qualitatively agrees with the bilayer Hubbard model calculations. The maximum bilayer energy splitting is about 88 meV for the normal state feature, while it is only about 20 meV for the superconducting peak.

7.
Phys Rev Lett ; 84(13): 2945-8, 2000 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-11018982

RESUMO

We report the first detailed and quantitative study of the Josephson coupling energy in the vortex liquid, Bragg glass, and vortex glass phases of Bi(2)Sr(2)CaCu(2)O(8+delta) by the Josephson plasma resonance. The measurements revealed distinct features in the T and H dependencies of the plasma frequency omega(pl) for each of these three vortex phases. When going across either the Bragg-to-vortex glass or the Bragg-to-liquid transition line, omega(pl) shows a dramatic change. We provide a quantitative discussion on the properties of these phase transitions, including the first order nature of the Bragg-to-vortex glass transition.

8.
Phys Rev Lett ; 84(18): 4192-5, 2000 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-10990643

RESUMO

We report measurements of the oxygen-isotope effect (OIE) on the in-plane penetration depth lambda(ab)(0) in underdoped La2-xSrxCuO4 single crystals. A highly sensitive magnetic torque sensor with a resolution of Deltatau approximately 10(-12) N m was used for the magnetic measurements on microcrystals with a mass of approximately 10 &mgr;g. The OIE on lambda(-2)(ab)(0) is found to be -10(2)% for x = 0.080 and -8(1)% for x = 0.086. It arises mainly from the oxygen-mass dependence of the in-plane effective mass m(*)(ab). The present results suggest that lattice vibrations are important for the occurrence of high temperature superconductivity.

9.
Phys Rev Lett ; 85(12): 2581-4, 2000 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-10978112

RESUMO

Quasiparticle dispersion in Bi2Sr2CaCu2O8 is investigated with improved angular resolution as a function of temperature and doping. Unlike the linear dispersion predicted by the band calculation, the data show a sharp break in dispersion at 50+/-15 meV binding energy where the velocity changes by a factor of 2 or more. This change provides an energy scale in the quasiparticle self-energy. This break in dispersion is evident at and away from the d-wave node line, but the magnitude of the dispersion change decreases with temperature and with increasing doping.

10.
Science ; 289(5477): 277-81, 2000 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-10894771

RESUMO

We report that the doping and temperature dependence of photoemission spectra near the Brillouin zone boundary of Bi(2)Sr(2)CaCu(2)O(8+delta)exhibit unexpected sensitivity to the superfluid density. In the superconducting state, the photoemission peak intensity as a function of doping scales with the superfluid density and the condensation energy. As a function of temperature, the peak intensity shows an abrupt behavior near the superconducting phase transition temperature where phase coherence sets in, rather than near the temperature where the gap opens. This anomalous manifestation of collective effects in single-particle spectroscopy raises important questions concerning the mechanism of high-temperature superconductivity.

11.
Science ; 276(5313): 770-3, 1997 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-9115196

RESUMO

Critical-current density (Jc) is a parameter of primary importance for potential applications of high-temperature copper oxide superconductors. It is limited principally by the breakdown of zero-resistive current due to thermally activated flux flow at high temperatures and high magnetic fields. One promising method to overcome this limitation is to introduce efficient pinning centers into crystals that can suppress the flux flow. A marked increase in Jc was observed in Bi2Sr2CaCu2O8+delta (Bi-2212) single crystals doped with a large amount of Pb. By electron microscopy, characteristic microstructures were revealed that probably underlie the observed enhancement in Jc: thin (10 to 50 nanometers), platelike domains having a modulation-free structure appeared with spacings of 50 to 100 nanometers along the b axis.

19.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...