Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(46): 17510-17527, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37943146

RESUMO

As a consequence of global climate change, acute water deficit conditions, soil salinity, and high temperature have been on the rise in their magnitude and frequency, which have been found to impact plant growth and development negatively. However, recent evidence suggests that many fruit plants that face moderate abiotic stresses can result in beneficial effects on the postharvest storage characters of the fruits. Salinity, drought, and high temperature conditions stimulate the synthesis of abscisic acid (ABA), and secondary metabolites, which are vital for fruit quality. The secondary metabolites like phenolic acids and anthocyanins that accumulate under abiotic stress conditions have antioxidant activity, and therefore, such fruits have health benefits too. It has been noticed that fruits accumulate more sugar and anthocyanins owing to upregulation of phenylpropanoid pathway enzymes. The novel information that has been generated thus far indicates that the growth environment during fruit development influences the quality components of the fruits. But the quality depends on the trade-offs between productivity, plant defense, and the frequency, duration, and intensity of stress. In this review, we capture the current knowledge of the irrigation practices for optimizing fruit production in arid and semiarid regions and enhancement in the quality of fruit with the application of exogenous ABA and identify gaps that exist in our understanding of fruit quality under abiotic stress conditions.


Assuntos
Antocianinas , Frutas , Antocianinas/metabolismo , Frutas/metabolismo , Mudança Climática , Ácido Abscísico/metabolismo , Carboidratos
2.
Plants (Basel) ; 12(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37446963

RESUMO

Roots from salt-susceptible ICSR-56 (SS) sorghum plants display metaxylem elements with thin cell walls and large diameter. On the other hand, roots with thick, lignified cell walls in the hypodermis and endodermis were noticed in salt-tolerant CSV-15 (ST) sorghum plants. The secondary wall thickness and number of lignified cells in the hypodermis have increased with the treatment of sodium chloride stress to the plants (STN). Lignin distribution in the secondary cell wall of sclerenchymatous cells beneath the lower epidermis was higher in ST leaves compared to the SS genotype. Casparian thickenings with homogenous lignin distribution were observed in STN roots, but inhomogeneous distribution was evident in SS seedlings treated with sodium chloride (SSN). Higher accumulation of K+ and lower Na+ levels were noticed in ST compared to the SS genotype. To identify the differentially expressed genes among SS and ST genotypes, transcriptomic analysis was carried out. Both the genotypes were exposed to 200 mM sodium chloride stress for 24 h and used for analysis. We obtained 70 and 162 differentially expressed genes (DEGs) exclusive to SS and SSN and 112 and 26 DEGs exclusive to ST and STN, respectively. Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis unlocked the changes in metabolic pathways in response to salt stress. qRT-PCR was performed to validate 20 DEGs in each SSN and STN sample, which confirms the transcriptomic results. These results surmise that anatomical changes and higher K+/Na+ ratios are essential for mitigating salt stress in sorghum apart from the genes that are differentially up- and downregulated in contrasting genotypes.

3.
Adv Exp Med Biol ; 1412: 285-310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37378774

RESUMO

Point-of-care SARS-CoV-2 rapid antigen tests have proven to be useful over the years and have become more apparent to the public eye during COVID-19 pandemic due to their ease of use, rapid processing and result times, and low cost. Here, we have assessed the effectiveness and accuracy of rapid antigen tests in comparison to the standard real-time polymerase chain reaction analyses of the same samples.


Assuntos
COVID-19 , Medicina de Precisão , Humanos , COVID-19/diagnóstico , Pandemias , SARS-CoV-2/genética , Testes Imunológicos , Sensibilidade e Especificidade
4.
Biotechnol Genet Eng Rev ; : 1-44, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36469501

RESUMO

Potassium (K+) is indispensable for the regulation of a plethora of functions like plant metabolism, growth, development, and abiotic stress responses. K+ is associated with protein synthesis and entangled in the activation of scores of enzymes, stomatal regulation, and photosynthesis. It has multiple transporters and channels that assist in the uptake, efflux, transport within the cell as well as from soil to different tissues, and the grain filling sites. While it is implicated in ion homeostasis during salt stress, it acts as a modulator of stomatal movements during water deficit conditions. K+ is reported to abate the effects of chilling and photooxidative stresses. K+ has been found to ameliorate effectively the co-occurrence of drought and high-temperature stresses. Nutrient deficiency of K+ makes leaves necrotic, leads to diminished photosynthesis, and decreased assimilate utilization highlighting the role it plays in photosynthesis. Notably, K+ is associated with the detoxification of reactive oxygen species (ROS) when plants are exposed to diverse abiotic stress conditions. It is irrefutable now that K+ reduces the activity of NADPH oxidases and at the same time maintains electron transport activity, which helps in mitigating the oxidative stress. K+ as a macronutrient in plant growth, the role of K+ during abiotic stress and the protein phosphatases involved in K+ transport have been reviewed. This review presents a holistic view of the biological functions of K+, its uptake, translocation, signaling, and the critical roles it plays under abiotic stress conditions, plant growth, and development that are being unraveled in recent times.

5.
Genes (Basel) ; 13(11)2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36360315

RESUMO

Systems genetics is key for integrating a large number of variants associated with diseases. Vitamin K (VK) is one of the scarcely studied disease conditions. In this work, we ascertained the differentially expressed genes (DEGs) and variants associated with individual subpopulations of VK disease phenotypes, viz., myocardial infarction, renal failure and prostate cancer. We sought to ask whether or not any DEGs harbor pathogenic variants common in these conditions, attempt to bridge the gap in finding characteristic biomarkers and discuss the role of long noncoding RNAs (lncRNAs) in the biogenesis of VK deficiencies.


Assuntos
Neoplasias da Próstata , RNA Longo não Codificante , Deficiência de Vitamina K , Humanos , Masculino , Vitamina K , RNA Longo não Codificante/genética , Biomarcadores
6.
Front Plant Sci ; 13: 952732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226297

RESUMO

Systematic genome-wide analysis of Sorghum bicolor revealed the identification of a total of 48 homologous genes comprising 21 proline-rich proteins (PRPs) and 27 hybrid proline-rich proteins (HyPRPs). Comprehensive scrutiny of these gene homologs was conducted for gene structure, phylogenetic investigations, chromosome mapping, and subcellular localization of proteins. Promoter analysis uncovered the regions rich with phosphorous- (BIHD), ammonium-, sulfur-responsive (SURE), and iron starvation-responsive (IRO2) along with biotic, abiotic, and development-specific cis-elements. Further, PRPs exhibit more methylation and acetylation sites in comparison with HyPRPs. miRNAs have been predicted which might play a role in cleavage and translation inhibition. Several of the SbPRP genes were stimulated in a tissue-specific manner under drought, salt, heat, and cold stresses. Additionally, exposure of plants to abscisic acid (ABA) and zinc (Zn) also triggered PRP genes in a tissue-dependent way. Among them, SbPRP17 has been found upregulated markedly in all tissues irrespective of the stress imposed. The expressions of SbHyPRPs, especially SbHyPRP2, SbHyPRP6, and SbHyPRP17 were activated under all stresses in all three tissues. On the other hand, SbHyPRP8 (root only) and SbHyPRP12 (all three tissues) were highly responsive to cold stress and ABA while SbHyPRP26 was induced by drought and Zn in the stem. Taken together, this study indicates the critical roles that SbPRPs and SbHyPRPs play during diverse abiotic stress conditions and notably the plausible roles that these genes play upon exposure to zinc, the crucial micronutrient in plants.

7.
Physiol Genomics ; 53(10): 433-440, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34492207

RESUMO

SARS-CoV-2 harbors many known unknown regions in the form of hypothetical open reading frames (ORFs). Although the mechanisms underlying the disease pathogenesis are not clearly understood, molecules such as long noncoding RNAs (lncRNAs) play a key regulatory role in the viral pathogenesis from endocytosis. We asked whether or not the lncRNAs in the host are associated with the viral proteins and argue that lncRNA-mRNAs molecules related to viral infection may regulate SARS-CoV-2 pathogenesis. Toward the end of the perspective, we provide challenges and insights into investigating these transgression pathways.


Assuntos
COVID-19/genética , Interações Hospedeiro-Patógeno/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , COVID-19/virologia , Epitopos , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Fases de Leitura Aberta , Filogenia , Mapas de Interação de Proteínas , SARS-CoV-2/metabolismo , Fatores Sexuais
8.
Curr Genomics ; 22(2): 137-152, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34220300

RESUMO

BACKGROUND: Sorghum, the C4 dry-land cereal, important for food, fodder, feed and fuel, is a model crop for abiotic stress tolerance with smaller genome size, genetic diversity, and bio-energy traits. The heat shock proteins/chaperonin 60s (HSP60/Cpn60s) assist the plastid proteins, and participate in the folding and aggregation of proteins. However, the functions of HSP60s in abiotic stress tolerance in Sorghum remain unclear. METHODS: Genome-wide screening and in silico characterization of SbHSP60s were carried out along with tissue and stress-specific expression analysis. RESULTS: A total of 36 HSP60 genes were identified in Sorghum bicolor. They were subdivided into 2 groups, the HSP60 and HSP10 co-chaperonins encoded by 30 and 6 genes, respectively. The genes are distributed on all the chromosomes, chromosome 1 being the hot spot with 9 genes. All the HSP60s were found hydrophilic and highly unstable. The HSP60 genes showed a large number of introns, the majority of them with more than 10. Among the 12 paralogs, only 1 was tandem and the remaining 11 segmental, indicating their role in the expansion of SbHSP60s. Majority of the SbHSP60 genes expressed uniformly in leaf while a moderate expression was observed in the root tissues, with the highest expression displayed by SbHSP60-1. From expression analysis, SbHSP60-3 for drought, SbHSP60-9 for salt, SbHSP60-9 and 24 for heat and SbHSP60-3, 9 and SbHSP10-2 have been found implicated for cold stress tolerance and appeared as the key regulatory genes. CONCLUSION: This work paves the way for the utilization of chaperonin family genes for achieving abiotic stress tolerance in plants.

9.
Artigo em Inglês | MEDLINE | ID: mdl-34131556

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by a Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2), which is a positive-strand RNA virus. The SARS-CoV-2 genome and its association to SAR-CoV-1 vary from ca. 66 to 96% depending on the type of betacoronavirideae family members. With several drugs, viz. chloroquine, hydroxychloroquine, ivermectin, artemisinin, remdesivir, azithromycin considered for clinical trials, there has been an inherent need to find distinctive antiviral mechanisms of these drugs. Curcumin, a natural bioactive molecule has been shown to have therapeutic potential for various diseases, and its effect on COVID-19 is also currently being explored. In this study, we show the binding potential of curcumin targeted to a variety of SARS-CoV-2 proteins, viz. spike glycoproteins (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), spike protein-ACE2 (PDB ID: 6M17) along with nsp10 (PDB ID: 6W4H) and RNA dependent RNA polymerase (PDB ID: 6M71) structures. Furthermore, representative docking complexes were validated using molecular dynamics simulations and mechanistic studies at 100 ns was carried on nucleocapsid and nsp10 proteins with curcumin complexes which resulted in stable and efficient binding energies and correlated with that of docked binding energies of the complexes. Both the docking and simulation studies indicate that curcumin has the potential as an antiviral against COVID-19.

10.
Front Plant Sci ; 11: 546213, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343588

RESUMO

Lysine (Lys) is indispensable nutritionally, and its levels in plants are modulated by both transcriptional and post-transcriptional control during plant ontogeny. Animal glutamate receptor homologs have been detected in plants, which may participate in several plant processes through the Lys catabolic products. Interestingly, a connection between Lys and serotonin metabolism has been established recently in rice. 2-Aminoadipate, a catabolic product of Lys appears to play a critical role between serotonin accumulation and the color of rice endosperm/grain. It has also been shown that expression of some lysine-methylated proteins and genes encoding lysine-methyltransferases (KMTs) are regulated by cadmium even as it is known that Lys biosynthesis and its degradation are modulated by novel mechanisms. Three complex pathways co-exist in plants for serine (Ser) biosynthesis, and the relative preponderance of each pathway in relation to plant development or abiotic stress tolerance are being unfolded slowly. But the phosphorylated pathway of L-Ser biosynthesis (PPSB) appears to play critical roles and is essential in plant metabolism and development. Ser, which participates indirectly in purine and pyrimidine biosynthesis and plays a pivotal role in plant metabolism and signaling. Also, L-Ser has been implicated in plant responses to both biotic and abiotic stresses. A large body of information implicates Lys-rich and serine/arginine-rich (SR) proteins in a very wide array of abiotic stresses. Interestingly, a link exists between Lys-rich K-segment and stress tolerance levels. It is of interest to note that abiotic stresses largely influence the expression patterns of SR proteins and also the alternative splicing (AS) patterns. We have checked if any lncRNAs form a cohort of differentially expressed genes from the publicly available PPSB, sequence read archives of NCBI GenBank. Finally, we discuss the link between Lys and Ser synthesis, catabolism, Lys-proteins, and SR proteins during plant development and their myriad roles in response to abiotic stresses.

11.
Sci Rep ; 10(1): 16562, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024155

RESUMO

Pearl millet is an important crop for alleviating micronutrient malnutrition through genomics-assisted breeding for grain Fe (GFeC) and Zn (GZnC) content. In this study, we identified candidate genes related to iron (Fe) and zinc (Zn) metabolism through gene expression analysis and correlated it with known QTL regions for GFeC/GZnC. From a total of 114 Fe and Zn metabolism-related genes that were selected from the related crop species, we studied 29 genes. Different developmental stages exhibited tissue and stage-specific expressions for Fe and Zn metabolism genes in parents contrasting for GFeC and GZnC. Results revealed that PglZIP, PglNRAMP and PglFER gene families were candidates for GFeC and GZnC. Ferritin-like gene, PglFER1 may be the potential candidate gene for GFeC. Promoter analysis revealed Fe and Zn deficiency, hormone, metal-responsive, and salt-regulated elements. Genomic regions underlying GFeC and GZnC were validated by annotating major QTL regions for grain Fe and Zn. Interestingly, PglZIP and PglNRAMP gene families were found common with a previously reported linkage group 7 major QTL region for GFeC and GZnC. The study provides insights into the foundation for functional dissection of different Fe and Zn metabolism genes homologs and their subsequent use in pearl millet molecular breeding programs globally.


Assuntos
Embaralhamento de DNA/métodos , Genes de Plantas/genética , Genes de Plantas/fisiologia , Estudos de Associação Genética/métodos , Ferro/metabolismo , Fenômenos Fisiológicos da Nutrição/genética , Fenômenos Fisiológicos da Nutrição/fisiologia , Pennisetum/genética , Pennisetum/metabolismo , Fenômenos Fisiológicos Vegetais/genética , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Zinco/metabolismo , Pennisetum/fisiologia
12.
J Biosci ; 452020.
Artigo em Inglês | MEDLINE | ID: mdl-33097676

RESUMO

Genetically engineered plants have varied applications in agriculture for enhancing the values of food and feed. Genetic engineering aims to introduce selected genetic regions with desirable traits into target plants for both spatial and temporal expressions. Promoters are the key elements responsible for regulating gene expressions by modulating the transcription factors (TFs) through recognition of RNA polymerases. Based on their recognition and expression, RNA polymerases were categorized into RNA pol II and pol III promoters. Promoter activity and specificity are the two prime parameters in regulating the transgene expression. Since the use of constitutive promoters like Cauliflower mosaic virus (CaMV) 35S may lead to adverse effects on nontarget organisms or ecosystem, inducible/tissue specific promoters and/or the RNA pol III promoters provide myriad opportunities for gene expressions with controlled regulation and with minimum adverse effects. Besides their role in transgene expression, their influence in synthetic biology and genome editing are also discussed. This review provides an update on the importance, current prospects, and insight into the advantages and disadvantages of promoters reported thus far would help to utilize them in the endeavour to develop nutritionally and agronomically improved transgenic crops for commercialization.


Assuntos
Plantas Geneticamente Modificadas/genética , RNA Polimerase III/genética , RNA Polimerase II/genética , Fatores de Transcrição/genética , Caulimovirus/patogenicidade , Regulação da Expressão Gênica de Plantas/genética , Engenharia Genética/tendências , Plantas/genética , Plantas/virologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/virologia , Regiões Promotoras Genéticas/genética
13.
Genes (Basel) ; 11(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32883037

RESUMO

This study was conducted to dissect the genetic basis and to explore the candidate genes underlying one of the important genomic regions on an SBI-10 long arm (L), governing the complex stay-green trait contributing to post-flowering drought-tolerance in sorghum. A fine-mapping population was developed from an introgression line cross-RSG04008-6 (stay-green) × J2614-11 (moderately senescent). The fine-mapping population with 1894 F2 was genotyped with eight SSRs and a set of 152 recombinants was identified, advanced to the F4 generation, field evaluated with three replications over 2 seasons, and genotyped with the GBS approach. A high-resolution linkage map was developed for SBI-10L using 260 genotyping by sequencing-Single Nucleotide Polymorphism (GBS-SNPs). Using the best linear unpredicted means (BLUPs) of the percent green leaf area (%GL) traits and the GBS-based SNPs, we identified seven quantitative trait loci (QTL) clusters and single gene, mostly involved in drought-tolerance, for each QTL cluster, viz., AP2/ERF transcription factor family (Sobic.010G202700), NBS-LRR protein (Sobic.010G205600), ankyrin-repeat protein (Sobic.010G205800), senescence-associated protein (Sobic.010G270300), WD40 (Sobic.010G205900), CPK1 adapter protein (Sobic.010G264400), LEA2 protein (Sobic.010G259200) and an expressed protein (Sobic.010G201100). The target genomic region was thus delimited from 15 Mb to 8 genes co-localized with QTL clusters, and validated using quantitative real-time (qRT)-PCR.


Assuntos
Senescência Celular , Mapeamento Cromossômico/métodos , Ligação Genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sorghum/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Sorghum/fisiologia
14.
PLoS One ; 14(8): e0218916, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31461465

RESUMO

Pearl millet is an important crop for arid and semi-arid regions of the world. Genomic regions associated with combining ability for yield-related traits under irrigated and drought conditions are useful in heterosis breeding programs. Chromosome segment substitution lines (CSSLs) are excellent genetic resources for precise QTL mapping and identifying naturally occurring favorable alleles. In the present study, testcross hybrid populations of 85 CSSLs were evaluated for 15 grain and stover yield-related traits for summer and wet seasons under irrigated control (CN) and moisture stress (MS) conditions. General combining ability (GCA) and specific combining ability (SCA) effects of all these traits were estimated and significant marker loci linked to GCA and SCA of the traits were identified. Heritability of the traits ranged from 53-94% in CN and 63-94% in MS. A total of 40 significant GCA loci and 36 significant SCA loci were identified for 14 different traits. Five QTLs (flowering time, panicle number and panicle yield linked to Xpsmp716 on LG4, flowering time and grain number per panicle with Xpsmp2076 on LG4) simultaneously controlled both GCA and SCA, demonstrating their unique genetic basis and usefulness for hybrid breeding programs. This study for the first time demonstrated the potential of a set of CSSLs for trait mapping in pearl millet. The novel combining ability loci linked with GCA and SCA values of the traits identified in this study may be useful in pearl millet hybrid and population improvement programs using marker-assisted selection (MAS).


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Meio Ambiente , Loci Gênicos/genética , Pennisetum/genética , Pennisetum/crescimento & desenvolvimento
15.
Plant Biotechnol J ; 17(5): 914-931, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30328278

RESUMO

Ascochyta blight (AB) is one of the major biotic stresses known to limit the chickpea production worldwide. To dissect the complex mechanisms of AB resistance in chickpea, three approaches, namely, transcriptome, small RNA and degradome sequencing were used. The transcriptome sequencing of 20 samples including two resistant genotypes, two susceptible genotypes and one introgression line under control and stress conditions at two time points (3rd and 7th day post inoculation) identified a total of 6767 differentially expressed genes (DEGs). These DEGs were mainly related to pathogenesis-related proteins, disease resistance genes like NBS-LRR, cell wall biosynthesis and various secondary metabolite synthesis genes. The small RNA sequencing of the samples resulted in the identification of 651 miRNAs which included 478 known and 173 novel miRNAs. A total of 297 miRNAs were differentially expressed between different genotypes, conditions and time points. Using degradome sequencing and in silico approaches, 2131 targets were predicted for 629 miRNAs. The combined analysis of both small RNA and transcriptome datasets identified 12 miRNA-mRNA interaction pairs that exhibited contrasting expression in resistant and susceptible genotypes and also, a subset of genes that might be post-transcriptionally silenced during AB infection. The comprehensive integrated analysis in the study provides better insights into the transcriptome dynamics and regulatory network components associated with AB stress in chickpea and, also offers candidate genes for chickpea improvement.


Assuntos
Ascomicetos , Cicer/genética , Resistência à Doença/genética , MicroRNAs/genética , Doenças das Plantas/microbiologia , RNA de Plantas/genética , Transcriptoma/genética , Cicer/imunologia , Cicer/metabolismo , Cicer/microbiologia , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Doenças das Plantas/imunologia , Locos de Características Quantitativas/genética , Análise de Sequência de RNA
16.
J Immunoassay Immunochem ; 40(2): 149-158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30477402

RESUMO

This study was conducted to develop and evaluate protein-G-based lateral flow assay (LFA) for rapid serodiagnosis of brucellosis in various domesticated animal species. The assay diagnostic performance was tested with 144 reference and 356 field sera samples and then compared with other serological assays. Results revealed that LFA showed 89% and 99% sensitivity and specificity, respectively, when compared with competitive ELISA as the gold standard. This study demonstrated LFA alone as a potential serodiagnostic assay for rapid serodiagnosis of brucellosis in various domesticated animal species.


Assuntos
Brucelose/imunologia , Proteínas do Tecido Nervoso/imunologia , Animais , Brucelose/sangue , Búfalos , Bovinos , Ensaio de Imunoadsorção Enzimática , Cabras , Proteínas do Tecido Nervoso/sangue , Ovinos , Suínos
17.
Biotechnol Rep (Amst) ; 16: 18-20, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29062722

RESUMO

Sclerospora graminicola pathogen is the most important biotic production constraints of pearl millet in India, Africa and other parts of the world. We report a de novo whole genome assembly and analysis of pathotype 1, one of the most virulent pathotypes of S. graminicola from India. The draft genome assembly contained 299,901,251 bp with 65,404 genes. This study may help understand the evolutionary pattern of pathogen and aid elucidation of effector evolution for devising effective durable resistance breeding strategies in pearl millet.

18.
Sci Rep ; 7(1): 1911, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28507291

RESUMO

Fusarium wilt (FW) is one of the most important biotic stresses causing yield losses in pigeonpea. Genetic improvement of pigeonpea through genomics-assisted breeding (GAB) is an economically feasible option for the development of high yielding FW resistant genotypes. In this context, two recombinant inbred lines (RILs) (ICPB 2049 × ICPL 99050 designated as PRIL_A and ICPL 20096 × ICPL 332 designated as PRIL_B) and one F2 (ICPL 85063 × ICPL 87119) populations were used for the development of high density genetic maps. Genotyping-by-sequencing (GBS) approach was used to identify and genotype SNPs in three mapping populations. As a result, three high density genetic maps with 964, 1101 and 557 SNPs with an average marker distance of 1.16, 0.84 and 2.60 cM were developed in PRIL_A, PRIL_B and F2, respectively. Based on the multi-location and multi-year phenotypic data of FW resistance a total of 14 quantitative trait loci (QTLs) including six major QTLs explaining >10% phenotypic variance explained (PVE) were identified. Comparative analysis across the populations has revealed three important QTLs (qFW11.1, qFW11.2 and qFW11.3) with upto 56.45% PVE for FW resistance. This is the first report of QTL mapping for FW resistance in pigeonpea and identified genomic region could be utilized in GAB.


Assuntos
Cajanus/microbiologia , Mapeamento Cromossômico , Fusarium/genética , Tipagem Molecular , Locos de Características Quantitativas , Cruzamento , Genética Populacional , Genoma Fúngico , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Polimorfismo de Nucleotídeo Único
19.
Appl Biochem Biotechnol ; 180(4): 766-779, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27188970

RESUMO

Abutilon indicum exploited for its immense value has been propagated successfully through multiple shoot induction and somatic embryogenesis. Direct regeneration (8.20 ± 0.83 shoots) was achieved from nodal explants using 0.5 mg/l kinetin (Kn) in MS media. The basal callus from nodal explants turned embryogenic on subsequent introduction of 0.2 mg/l TDZ into the Kn-supplemented media, giving rise to somatic embryos. The embryogenic potential of calli expressed in terms of embryo-forming capacity (EFC) increased from 8.15 EFC to 20.95 EFC after plasmolysis. The phytochemical analysis (HPLC) for the presence of scopoletin and scoparone has revealed a unique accumulation pattern, with higher levels of scopoletin during the earlier stages and scoparone in the later stages of development. The embryogenic calli contained the highest amount of coumarins (99.20 ± 0.97 and 61.03 ± 0.47 µg/gFW, respectively) followed by regenerated plant (9.43 ± 0.20 and 36.36 ± 1.19 µg/gFW, respectively), obtained via somatic embryogenesis. Rapid multiplication of A. indicum equipped with two potent coumarins is important in order to meet the commercial demand for combat against dreadful diseases, thereby providing a new platform for plant-based drugs and their manufacture on a commercial scale.


Assuntos
Cumarínicos/análise , Malvaceae/química , Regeneração , Escopoletina/análise , Técnicas de Cultura de Tecidos/métodos , Cromatografia Líquida de Alta Pressão , Citocininas/farmacologia , Técnicas de Embriogênese Somática de Plantas , Regeneração/efeitos dos fármacos , Sementes/efeitos dos fármacos
20.
Sci Rep ; 5: 15296, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26478518

RESUMO

A combination of two approaches, namely QTL analysis and gene enrichment analysis were used to identify candidate genes in the "QTL-hotspot" region for drought tolerance present on the Ca4 pseudomolecule in chickpea. In the first approach, a high-density bin map was developed using 53,223 single nucleotide polymorphisms (SNPs) identified in the recombinant inbred line (RIL) population of ICC 4958 (drought tolerant) and ICC 1882 (drought sensitive) cross. QTL analysis using recombination bins as markers along with the phenotyping data for 17 drought tolerance related traits obtained over 1-5 seasons and 1-5 locations split the "QTL-hotspot" region into two subregions namely "QTL-hotspot_a" (15 genes) and "QTL-hotspot_b" (11 genes). In the second approach, gene enrichment analysis using significant marker trait associations based on SNPs from the Ca4 pseudomolecule with the above mentioned phenotyping data, and the candidate genes from the refined "QTL-hotspot" region showed enrichment for 23 genes. Twelve genes were found common in both approaches. Functional validation using quantitative real-time PCR (qRT-PCR) indicated four promising candidate genes having functional implications on the effect of "QTL-hotspot" for drought tolerance in chickpea.


Assuntos
Adaptação Biológica/genética , Cicer/genética , Cicer/metabolismo , Secas , Genes de Plantas , Locos de Características Quantitativas , Estresse Fisiológico/genética , Pontos de Quebra do Cromossomo , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Ligação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Endogamia , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Recombinação Genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...