Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 118(25): 4372-81, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24884962

RESUMO

We explored the reactions on the phenyl (C6H5; X(2)A1) and phenyl-d5 (C6D5; X(2)A1) radical with 1,2-butadiene (C4H6; X(1)A') at a collision energy of about 52 ± 3 kJ mol(-1) in a crossed molecular beam apparatus. The reaction of phenyl with 1,2-butadiene is initiated by adding the phenyl radical with its radical center to the π electron density at the C1/C3 carbon atom of 1,2-butadiene. Later, the initial collision complexes isomerize via phenyl group migration from the C1/C3 carbon atoms to the C2 carbon atom of the allene moiety of 1,2-butadiene. The resulting intermediate undergoes unimolecular decomposition through hydrogen atom emission from the methyl group of the 1,2-butadiene moiety via a rather loose exit transition state leading to 2-phenyl-1,3-butadiene in an overall exoergic reaction (ΔRG = -72 ± 10 kJ mol(-1)). This finding reveals the strong collision-energy dependence of this system when the data are compared with those of the phenyl radical with 1,2-butadiene previously recorded at collision energies up to 160 kJ mol(-1), with the previous study exhibiting the thermodynamically less stable 1-phenyl-3-methylallene (ΔRG = -33 ± 10 kJ mol(-1)) and 1-phenyl-2-butyne (ΔRG = -24 ± 10 kJ mol(-1)) to be the dominant products.

2.
J Phys Chem A ; 116(6): 1571-85, 2012 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-22239650

RESUMO

Potential energy surfaces (PESs) of the reactions of 1- and 2-naphthyl radicals with molecular oxygen have been investigated at the G3(MP2,CC)//B3LYP/6-311G** level of theory. Both reactions are shown to be initiated by barrierless addition of O(2) to the respective radical sites of C(10)H(7). The end-on O(2) addition leading to 1- and 2-naphthylperoxy radicals exothermic by 45-46 kcal/mol is found to be more preferable thermodynamically than the side-on addition. At the subsequent reaction step, the chemically activated 1- and 2-C(10)H(7)OO adducts can eliminate an oxygen atom leading to the formation of 1- and 2-naphthoxy radical products, respectively, which in turn can undergo unimolecular decomposition producing indenyl radical + CO via the barriers of 57.8 and 48.3 kcal/mol and with total reaction endothermicities of 14.5 and 10.2 kcal/mol, respectively. Alternatively, the initial reaction adducts can feature an oxygen atom insertion into the attacked C(6) ring leading to bicyclic intermediates a10 and a10' (from 1-naphthyl + O(2)) or b10 and b10' (from 2-naphthyl + O(2)) composed from two fused six-member C(6) and seven-member C(6)O rings. Next, a10 and a10' are predicted to decompose to C(9)H(7) (indenyl) + CO(2), 1,2-C(10)H(6)O(2) (1,2-naphthoquinone) + H, and 1-C(9)H(7)O (1-benzopyranyl) + CO, whereas b10 and b10' would dissociate to C(9)H(7) (indenyl) + CO(2), 2-C(9)H(7)O (2-benzopyranyl) + CO, and 1,2-C(10)H(6)O(2) (1,2-naphthoquinone) + H. On the basis of this, the 1-naphthyl + O(2) reaction is concluded to form the following products (with the overall reaction energies given in parentheses): 1-naphthoxy + O (-15.5 kcal/mol), indenyl + CO(2) (-123.9 kcal/mol), 1-benzopyranyl + CO (-97.2 kcal/mol), and 1,2-naphthoquinone + H (-63.5 kcal/mol). The 2-naphthyl + O(2) reaction is predicted to produce 2-naphthoxy + O (-10.9 kcal/mol), indenyl + CO(2) (-123.7 kcal/mol), 2-benzopyranyl + CO (-90.7 kcal/mol), and 1,2-naphthoquinone + H (-63.2 kcal/mol). Simplified kinetic calculations using transition-state theory computed rate constants at the high-pressure limit indicate that the C(10)H(7)O + O product channels are favored at high temperatures, while the irreversible oxygen atom insertion first leading to the a10 and a10' or b10 and b10' intermediates and then to their various decomposition products is preferable at lower temperatures. Among the decomposition products, indenyl + CO(2) are always most favorable at lower temperatures, but the others, 1,2-C(10)H(6)O(2) (1,2-naphthoquinone) + H (from a10 and b10'), 1-C(9)H(7)O (1-benzopyranyl) + CO (from a10'), and 2-C(10)H(7)O (2-benzopyranyl) + O (from b10 and minor from b10'), may notably contribute or even become major products at higher temperatures.


Assuntos
Naftalenos/química , Oxigênio/química , Teoria Quântica , Dióxido de Carbono/química , Cinética , Modelos Moleculares , Conformação Molecular
3.
Proc Natl Acad Sci U S A ; 109(1): 53-8, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22198769

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are regarded as key molecules in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest prototype-naphthalene (C(10)H(8))-has remained an open question. Here, we show in a combined crossed beam and theoretical study that naphthalene can be formed in the gas phase via a barrierless and exoergic reaction between the phenyl radical (C(6)H(5)) and vinylacetylene (CH(2) = CH-C ≡ CH) involving a van-der-Waals complex and submerged barrier in the entrance channel. Our finding challenges conventional wisdom that PAH-formation only occurs at high temperatures such as in combustion systems and implies that low temperature chemistry can initiate the synthesis of the very first PAH in the interstellar medium. In cold molecular clouds, barrierless phenyl-type radical reactions could propagate the vinylacetylene-mediated formation of PAHs leading to more complex structures like phenanthrene and anthracene at temperatures down to 10 K.


Assuntos
Temperatura Baixa , Poeira Cósmica , Naftalenos/síntese química , Hidrocarbonetos Policíclicos Aromáticos/síntese química , Radicais Livres , Isomerismo , Espectrometria de Massas , Peso Molecular , Naftalenos/química , Hidrocarbonetos Policíclicos Aromáticos/química , Propriedades de Superfície , Termodinâmica
4.
Chem Asian J ; 6(11): 3035-47, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21956874

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are regarded as key intermediates in the molecular growth process that forms soot from incomplete fossil fuel combustion. Although heavily researched, the reaction mechanisms for PAH formation have only been investigated through bulk experiments; therefore, current models remain conjectural. We report the first observation of a directed synthesis of a PAH under single-collision conditions. By using a crossed-molecular-beam apparatus, phenyl radicals react with C(3)H(4) isomers, methylacetylene and allene, to form indene at collision energies of 45 kJ mol(-1). The reaction dynamics supported by theoretical calculations show that both isomers decay through the same collision complex, are indirect, have long lifetimes, and form indene in high yields. Through the use of deuterium-substituted reactants, we were able to identify the reaction pathway to indene.


Assuntos
Alcadienos/química , Alcinos/química , Indenos/síntese química , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/síntese química , Fuligem/química , Deutério/química , Radicais Livres/química , Indenos/análise , Isomerismo , Modelos Químicos , Simulação de Dinâmica Molecular , Hidrocarbonetos Policíclicos Aromáticos/análise , Fuligem/metabolismo
5.
J Phys Chem A ; 114(21): 6255-62, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20462227

RESUMO

Vibronic spectra of doublet-doublet transitions of 1-hydronaphthyl (1HN), 2-hydronaphthyl (2HN), and 1,2,3-trihydronaphthyl (THN, tetralyl) radicals have been recorded under jet-cooled conditions. Transitions due to the two C(10)H(9) isomers were identified and assigned based on the choice of radical precursor, visible-visible hole-burning spectroscopy, comparison of observed vibronic transitions with calculation, and photoionization efficiency scans. The latter provided accurate ionization potentials for the three free radicals (IP(1HN) = 6.570 eV, IP(2HN) = 6.487 eV, IP(THN) = 6.620 eV, errors +/-0.002 eV). A thermochemical cycle is used to extract from these ionization potentials the C-H bond dissociation energy (BDE) of 1HN at the 1-position of 121.2 +/- 2 kJ/mol. Using proton affinities of 2HN and THN calculated at the G3(MP2, CC)//B3LYP/6-311G** level of theory, the corresponding C-H BDEs of 2HN at the 2-carbon (103.6 +/- 2 kJ/mol) and of THN at the 3-position (168 +/- 3 kJ/mol) are derived. The possible role played by these hydronaphthyl radicals in Titan's atmosphere, the interstellar medium, and combustion are briefly discussed.

6.
J Am Chem Soc ; 132(8): 2672-83, 2010 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-20136077

RESUMO

Reactions of dicarbon molecules (C(2)) with C(4)H(6) isomers such as 1,3-butadiene represent a potential, but hitherto unnoticed, route to synthesize the first aromatic C(6) ring in hydrocarbon flames and in the interstellar medium where concentrations of dicarbon transient species are significant. Here, crossed molecular beams experiments of dicarbon molecules in their X(1)Sigma(g)(+) electronic ground state and in the first electronically excited a(3)Pi(u) state have been conducted with 1,3-butadiene and two partially deuterated counterparts (1,1,4,4-D4-1,3-butadiene and 2,3-D2-1,3-butadiene) at two collision energies of 12.7 and 33.7 kJ mol(-1). Combining these scattering experiments with electronic structure and RRKM calculations on the singlet and triplet C(6)H(6) surfaces, our investigation reveals that the aromatic phenyl radical is formed predominantly on the triplet surface via indirect scattering dynamics through a long-lived reaction intermediate. Initiated by a barrierless addition of triplet dicarbon to one of the terminal carbon atoms of 1,3-butadiene, the collision complex undergoes trans-cis isomerization followed by ring closure and hydrogen migration prior to hydrogen atom elimination, ultimately forming the phenyl radical. The latter step emits the hydrogen atom almost perpendicularly to the rotational plane of the decomposing intermediate and almost parallel to the total angular momentum vector. On the singlet surface, smaller contributions of phenyl radical could not be excluded; experiments with partially deuterated 1,3-butadiene indicate the formation of the thermodynamically less stable acyclic H(2)CCHCCCCH(2) isomer. This study presents the very first experimental evidence, contemplated by theoretical studies, that under single collision conditions an aromatic hydrocarbon molecule can be formed in a bimolecular gas-phase reaction via reaction of two acyclic molecules involving cyclization processes at collision energies highly relevant to combustion flames.

7.
Faraday Discuss ; 147: 231-49; discussion 251-82, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21302550

RESUMO

Laboratory investigations of the isomer-specific spectroscopy of several C10Hn isomers with n = 8-12 are described, focusing on structures of relevance to the formation or subsequent reaction of naphthalene. The photochemical models of Titan's atmosphere have now progressed to the point that further development of the large-molecule end of the model must recognize and explicitly incorporate the unique spectroscopy, photochemistry, and reactivity of structural isomers. Mass-resolved, resonant two-photon ionization (R2PI) was used to record ultraviolet spectra of specific C10Hn composition, while hole-burning methods were used to resolve the spectra of different structural and conformational isomers under jet-cooled conditions. The R2PI spectrum of a new C10H8 isomer, 1-phenyl-1-butyne-3-ene, is described and contrasted with other C10H8 isomers. The anticipated role for resonance-stabilized radicals is illustrated by studies of the visible spectroscopy of two hydronaphthyl radical isomers, 1-C10H9 and 2-C10H9, and the trihydronaphthyl radical 1,2,3-C10H11. Conformation-specific spectra of an anticipated C10H12 recombination product of benzyl and allyl radicals is also reported. A reaction scheme that fleshes out the experimental data surrounding naphthalene and its hydrogenated radicals and ions is proposed as a basis for future modeling under Titan's conditions.

8.
J Am Chem Soc ; 130(41): 13618-29, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18795780

RESUMO

A novel ethynyl addition mechanism (EAM) has been established computationally as a practicable alternative to high-temperature hydrogen-abstraction-C2H2-addition (HACA) sequences to form polycyclic aromatic hydrocarbon (PAH) -like species under low-temperature conditions in the interstellar medium and in hydrocarbon-rich atmospheres of planets and their moons. Initiated by an addition of the ethynyl radical (C2H) to the ortho-carbon atom of the phenylacetylene (C6H5C2H) molecule, the reactive intermediate loses rapidly a hydrogen atom, forming 1,2-diethynylbenzene. The latter can react with a second ethynyl molecule via addition to a carbon atom of one of the ethynyl side chains. A consecutive ring closure of the intermediate leads to an ethynyl-substituted naphthalene core. Under single-collision conditions as present in the interstellar medium, this core loses a hydrogen atom to form ethynyl-substituted 1,2-didehydronaphthalene. However, under higher pressures as present, for example, in the atmosphere of Saturn's moon Titan, three-body reactions can lead to a stabilization of this naphthalene-core intermediate. We anticipate this mechanism to be of great importance to form PAH-like structures in the interstellar medium and also in hydrocarbon-rich, low-temperature atmospheres of planets and their moons such as Titan. If the final ethynyl addition to 1,2-diethynylbenzene is substituted by a barrierless addition of a cyano (CN) radical, this newly proposed mechanism can even lead to the formation of cyano-substituted naphthalene cores in the interstellar medium and in planetary atmospheres.

9.
J Chem Phys ; 128(21): 214301, 2008 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-18537416

RESUMO

Ab initio CCSD(T)cc-pVTZ//B3LYP6-311G(**) and CCSD(T)/complete basis set (CBS) calculations of stationary points on the C(6)H(3) potential energy surface have been performed to investigate the reaction mechanism of C(2)H with diacetylene and C(4)H with acetylene. Totally, 25 different C(6)H(3) isomers and 40 transition states are located and all possible bimolecular decomposition products are also characterized. 1,2,3- and 1,2,4-tridehydrobenzene and H(2)CCCCCCH isomers are found to be the most stable thermodynamically residing 77.2, 75.1, and 75.7 kcal/mol lower in energy than C(2)H + C(4)H(2), respectively, at the CCSD(T)/CBS level of theory. The results show that the most favorable C(2)H + C(4)H(2) entrance channel is C(2)H addition to a terminal carbon of C(4)H(2) producing HCCCHCCCH, 70.2 kcal/mol below the reactants. This adduct loses a hydrogen atom from the nonterminal position to give the HCCCCCCH (triacetylene) product exothermic by 29.7 kcal/mol via an exit barrier of 5.3 kcal/mol. Based on Rice-Ramsperger-Kassel-Marcus calculations under single-collision conditions, triacetylene+H are concluded to be the only reaction products, with more than 98% of them formed directly from HCCCHCCCH. The C(2)H + C(4)H(2) reaction rate constants calculated by employing canonical variational transition state theory are found to be similar to those for the related C(2)H + C(2)H(2) reaction in the order of magnitude of 10(-10) cm(3) molecule(-1) s(-1) for T = 298-63 K, and to show a negative temperature dependence at low T. A general mechanism for the growth of polyyne chains involving C(2)H + H(C[triple bond]C)(n)H --> H(C[triple bond]C)(n+1)H + H reactions has been suggested based on a comparison of the reactions of ethynyl radical with acetylene and diacetylene. The C(4)H + C(2)H(2) reaction is also predicted to readily produce triacetylene + H via barrierless C(4)H addition to acetylene, followed by H elimination.

10.
J Phys Chem A ; 111(29): 6704-12, 2007 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-17391012

RESUMO

Ab initio calculations of the potential energy surface for the C3(1Sigmag+)+C2H2(1Sigmag+) reaction have been performed at the RCCSD(T)/cc-pVQZ//B3LYP/6-311G(d,p) + ZPE[B3LYP/6-311G(d,p)] level with extrapolation to the complete basis set limit for key intermediates and products. These calculations have been followed by statistical calculations of reaction rate constants and product branching ratios. The results show the reaction to begin with the formation of the 3-(didehydrovinylidene)cyclopropene intermediate i1 or five-member ring isomer i7 with the entrance barriers of 7.6 and 13.8 kcal/mol, respectively. i1 rearranges to the other C5H2 isomers, including ethynylpropadienylidene i2, singlet pentadiynylidene i3, pentatetraenylidene i4, ethynylcyclopropenylidene i5, and four- and five-member ring structures i6, i7, and i8 by ring-closure and ring-opening processes and hydrogen migrations. i2, i3, and i4 lose a hydrogen atom to produce the most stable linear isomer of C5H with the overall reaction endothermicity of approximately 24 kcal/mol. H elimination from i5 leads to the formation of the cyclic C5H isomer, HC2C3, +H, 27 kcal/ mol above C3+C2H2. 1,1-H2 loss from i4 results in the linear pentacarbon C5+H2 products endothermic by 4 kcal/mol. The H elimination pathways occur without exit barriers, whereas the H2 loss from i4 proceeds via a tight transition state 26.4 kcal/mol above the reactants. The characteristic energy threshold for the reaction under single collision conditions is predicted be in the range of approximately 24 kcal/mol. Product branching ratios obtained by solving kinetic equations with individual rate constants calculated using RRKM and VTST theories for collision energies between 25 and 35 kcal/mol show that l-C5H+H are the dominant reaction products, whereas HC2C3+H and l-C5+H2 are minor products with branching ratios not exceeding 2.5% and 0.7%, respectively. The ethynylcyclopropenylidene isomer i5 is calculated to be the most stable C5H2 species, more favorable than triplet pentadiynylidene i3t by approximately 2 kcal/mol.

11.
J Phys Chem A ; 109(27): 6114-27, 2005 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16833949

RESUMO

Ab initio G2M calculations have been performed to investigate the potential energy surface for the reaction of C6H5 with O2. The reaction is shown to start with an exothermic barrierless addition of O2 to the radical site of C6H5 to produce phenylperoxy (1) and, possibly, 1,2-dioxaspiro[2.5]octadienyl (dioxiranyl, 8) radicals. Next, 1 loses the terminal oxygen atom to yield the phenoxy + O products (3) or rearranges to 8. The dioxiranyl can further isomerize to a seven-member ring 2-oxepinyloxy radical (10), which can give rise to various products including C5H5 + CO2, pyranyl + CO, o-benzoquinone + H, and 2-oxo-2,3-dihydrofuran-4-yl + C2H2. Once 10 is produced, it is unlikely to go back to 8 and 1, because the barriers separating 10 from the products are much lower than the reverse barrier from 10 to 8. Thus, the branching ratio of C6H5O + O against the other products is mostly controlled by the critical transition states between 1 and 3, 1 and 8, and 8 and 10. According to the calculated barriers, the most favorable product channel for the decomposition of 10 is C5H5 + CO2, followed by pyranyl + CO and o-benzoquinone + H. Since C6H5O + O and C5H5 + CO2 are expected to be the major primary products of the C6H5 + O2 reaction and thermal decomposition of C6H5O leads to C5H5 + CO, cyclopentadienyl radicals are likely to be the major product of phenyl radical oxidation, and so it results in degradation of the six-member aromatic ring to the five-member cyclopentadienyl ring. Future multichannel RRKM calculations of reaction rate constants are required to support these conclusions and to quantify the product branching ratios at various combustion conditions.


Assuntos
Furanos/química , Oxigênio/química , Fenóis/química , Piranos/química , Espécies Reativas de Oxigênio , Benzeno/química , Benzoquinonas/química , Modelos Químicos , Estrutura Molecular , Transdução de Sinais
12.
J Phys Chem A ; 109(32): 6993-7, 2005 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-16834061

RESUMO

This letter revisits critical intermediates and transition states of the C2H3 + O2 reaction. To obtain their accurate relative energies, ab initio calculations are performed using sophisticated single and multireference theoretical methods with various basis sets. The energy difference between two crucial transition states, for ring opening in dioxiranylmethyl radical and its isomerization to C2H3OO, is calculated as approximately 2 kcal/mol both at multireference MRCI and at single-reference CCSD(T) levels extrapolated to the complete basis set limit. The deviation from the earlier G2M(RCC,MP2) value (approximately 7 kcal/mol) is caused by a deficiency of the 6-311+G(3df,2p) basis set as compared to correlation-consistent Dunning's basis sets.

13.
Chemistry ; 9(3): 726-40, 2003 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-12569465

RESUMO

Ab initio G2M(MP2)//B3LYP/6-311G** calculations have been performed to investigate the reaction mechanism of photodissociation of buta-1,2- and -1,3-dienes and but-2-yne after their internal conversion into the vibrationally hot ground electronic state. The detailed study of the potential-energy surface was followed by microcanonical RRKM calculations of energy-dependent rate constants for individual reaction steps (at 193 nm photoexcitation and under collision-free conditions) and by solution of kinetic equations aimed at predicting the product branching ratios. For buta-1,2-diene, the major dissociation channels are found to be the single Cbond;C bond cleavage to form the methyl and propargyl radicals and loss of hydrogen atoms from various positions to produce the but-2-yn-1-yl (p1), buta-1,2-dien-4-yl (p2), and but-1-yn-3-yl (p3) isomers of C(4)H(5). The calculated branching ratio of the CH(3) + C(3)H(3)/C(4)H(5) + H products, 87.9:5.9, is in a good agreement with the recent experimental value of 96:4 (ref. 21) taking into account that a significant amount of the C(4)H(5) product undergoes secondary dissociation to C(4)H(4) + H. The isomerization of buta-1,2-diene to buta-1,3-diene or but-2-yne appears to be slower than its one-step decomposition and plays only a minor role. On the other hand, the buta-1,3-diene-->buta-1,2-diene, buta-1,3-diene-->but-2-yne, and buta-1,3-diene-->cyclobutene rearrangements are significant in the dissociation of buta-1,3-diene, which is shown to be a more complex process. The major reaction products are still CH(3) + C(3)H(3), formed after the isomerization of buta-1,3-diene to buta-1,2-diene, but the contribution of the other radical channels, C(4)H(5) + H and C(2)H(3) + C(2)H(3), as well as two molecular channels, C(2)H(2) + C(2)H(4) and C(4)H(4) + H(2), significantly increases. The overall calculated C(4)H(5) + H/CH(3) + C(3)H(3)/C(2)H(3) + C(2)H(3)/C(4)H(4) + H(2)/C(2)H(2) + C(2)H(4) branching ratio is 24.0:49.6:4.6:6.1:15.2, which agrees with the experimental value of 20:50:8:2:2022 within 5 % margins. For but-2-yne, the one-step decomposition pathways, which include mostly H atom loss to produce p1 and, to a minor extent, molecular hydrogen elimination to yield methylethynylcarbene, play an approximately even role with that of the channels that involve the isomerization of but-2-yne to buta-1,2- or -1,3-dienes. p1 + H are the most important reaction products, with a branching ratio of 56.6 %, followed by CH(3) + C(3)H(3) (23.8 %). The overall C(4)H(5) + H/CH(3) + C(3)H(3)/C(2)H(3) + C(2)H(3)/C(4)H(4) + H(2)/C(2)H(2) + C(2)H(4) branching ratio is predicted as 62.0:23.8:2.5:5.7:5.6. Contrary to buta-1,2- and -1,3-dienes, photodissociation of but-2-yne is expected to produce more hydrogen atoms than methyl radicals. The isomerization mechanisms between various isomers of the C(4)H(6) molecule including buta-1,2- and -1,3-dienes, but-2-yne, 1-methylcyclopropene, dimethylvinylidene, and cyclobutene have been also characterized in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...