Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(12): 3117-3131, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36970098

RESUMO

Cyanobacterial photosystem I (PSI) is one of the most efficient photosynthetic machineries found in nature. Due to the large scale and complexity of the system, the energy transfer mechanism from the antenna complex to the reaction center is still not fully understood. A central element is the accurate evaluation of the individual chlorophyll excitation energies (site energies). Such an evaluation must include a detailed treatment of site specific environmental influences on structural and electrostatic properties, but also their evolution in the temporal domain, because of the dynamic nature of the energy transfer process. In this work, we calculate the site energies of all 96 chlorophylls in a membrane-embedded model of PSI. The employed hybrid QM/MM approach using the multireference DFT/MRCI method in the QM region allows to obtain accurate site energies under explicit consideration of the natural environment. We identify energy traps and barriers in the antenna complex and discuss their implications for energy transfer to the reaction center. Going beyond previous studies, our model also accounts for the molecular dynamics of the full trimeric PSI complex. Via statistical analysis we show that the thermal fluctuations of single chlorophylls prevent the formation of a single prominent energy funnel within the antenna complex. These findings are also supported by a dipole exciton model. We conclude that energy transfer pathways may form only transiently at physiological temperatures, as thermal fluctuations overcome energy barriers. The set of site energies provided in this work sets the stage for theoretical and experimental studies on the highly efficient energy transfer mechanisms in PSI.

2.
Angew Chem Int Ed Engl ; 60(48): 25290-25295, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34609785

RESUMO

Imines are photoaddressable motifs useful in the development of new generations of molecular switches, but their operation with low-energy photons and control over isomer stability remain challenging. Based on a computational design, we developed phenylimino indolinone (PIO), a green-light-addressable T-type photoswitch showing negative photochromism. The isomerization behavior of this photoactuator of the iminothioindoxyl (ITI) class was studied using time-resolved spectroscopies on time scales from femtoseconds to the steady state and by quantum-chemical analyses. The understanding of the isomerization properties and substituent effects governing these photoswitches opens new avenues for the development of novel T-type visible-light-addressable photoactuators based on C=N bonds.

3.
Photochem Photobiol Sci ; 20(7): 927-938, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34227039

RESUMO

Isoindigo, the structural isomer of the well-known dye indigo, has seen a major revival recently because of the increasing interest of its use as a potential drug core structure and for the development of organic photovoltaic materials. Highly beneficial for diverse applications are its facile synthesis, straightforward functionalisation and the broad absorption band in the visible range. Moreover, its intrinsic electron deficiency renders isoindigo a promising acceptor structure in bulk heterojunction architectures. Here we present new insights into the substituent effects of N-functionalised isoindigos, developing a reliable and fast in silico screening approach of a library of compounds. Using experimental UV-Vis and electrochemical data increased the accuracy of the TD-DFT method employed. This procedure allowed us to accurately predict the optical and electrochemical properties of N-functionalised isoindigos and the elucidation of the relationship between substituent effects and electronic properties.


Assuntos
Corantes/química , Técnicas Eletroquímicas , Índigo Carmim/química , Teoria da Densidade Funcional , Fenômenos Ópticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...