Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 17931, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504119

RESUMO

Climate change is one of the major threats to biodiversity, but its impact varies among the species. Bark beetles (Ips spp.), as well as other wood-boring pests of European forests, show escalating numbers in response to the changes driven by climate change and seriously affect the survival of the forests through the massive killing of trees. Many methods were developed to control these wood-boring beetles, however, their implementation can be detrimental for other forest specialists. Ants are widely used for biological pest-control, so in our study, we aimed to test the effect of Formica polyctena on the control of the wood-boring beetles. The results show that the proportion of infested trees is significantly reduced by the increase of the number of F. polyctena nests, with a strong effect on those infested by Ips species. We also show that the boring beetle community is shaped by different biotic and abiotic factors, including the presence of F. polyctena nests. However, the boring beetle infestation was not related to the latitude, altitude and age of the forests. Based on our results, we assert the effectiveness of the red wood ants as biological pest control and the importance of their conservation to keep the health of the forests.


Assuntos
Formigas/fisiologia , Besouros/fisiologia , Florestas , Controle Biológico de Vetores/métodos , Árvores , Altitude , Animais , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais/métodos , Hungria , Polônia , Dinâmica Populacional , Eslováquia
2.
Animals (Basel) ; 10(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957527

RESUMO

The consequences of anthropogenic climate change are one of the major concerns of conservation biology. A cascade of negative effects is expected to affect various ecosystems, one of which is Central European coniferous forests and their unique biota. These coniferous forests are the primary habitat of many forest specialist species such as red wood ants. Climate change-induced rising of temperature allows trees to skip winter hibernation, making them more vulnerable to storms that cause wind felling, and in turn, promotes bark beetle infestations that results in unscheduled clear-cuttings. Red wood ants can also be exposed to such habitat changes. We investigated the effects of bark beetle-induced clear-cutting and the absence of coniferous trees on colonies of Formica polyctena, including a mixed-coniferous forest as a reference. Our aim was to investigate how these habitat features affect the nest characteristics and nesting habits of F. polyctena. Our results indicate that, in the absence of conifers, F. polyctena tend to use different alternatives for nest material, colony structure, and food sources. However, the vitality of F. polyctena colonies significantly decreased (smaller nest mound volumes). Our study highlights the ecological flexibility of this forest specialist and its potential to survive under extreme conditions.

3.
Insects ; 11(6)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512838

RESUMO

Red wood ants are keystone species of forest ecosystems in Europe. Environmental factors and habitat characteristics affect the size of their nest mounds, an important trait being in concordance with a colony's well-being and impact on its surroundings. In this study, we investigated the effect of large-scale (latitude and altitude) and small-scale environmental factors (e.g., characteristics of the forest) on the size of nest mounds of Formica polyctena in Central Europe. We predicted that the change in nest size is in accordance with Bergmann's rule that states that the body size of endotherm animals increases with the higher latitude and/or altitude. We found that the size of nests increased along the latitudinal gradient in accordance with Bergmann's rule. The irradiation was the most important factor responsible for the changes in nest size, but temperature and local factors, like the perimeter of the trees and their distance from the nest, were also involved. Considering our results, we can better understand the long-term effects and consequences of the fast-changing environmental factors on this ecologically important group. This knowledge can contribute to the planning of forest management tactics in concordance with the assurance of the long-term survival of red wood ants.

4.
Front Plant Sci ; 11: 236, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194608

RESUMO

Featuring a transitional zone between closed forests and treeless steppes, forest-steppes cover vast areas, and have outstanding conservation importance. The components of this mosaic ecosystem can conveniently be classified into two basic types, forests and grasslands. However, this dichotomic classification may not fit reality as habitat organization can be much more complex. In this study, our aim was to find out if the main habitat types can be grouped into two distinct habitat categories (which would support the dichotomic description), or a different paradigm better fits this complex ecosystem. We selected six main habitats of sandy forest-steppes, and, using 176 relevés, we compared their vegetation based on species composition (NMDS ordination, number of common species of the studied habitats), relative ecological indicator values (mean indicators for temperature, soil moisture, and light availability), and functional species groups (life-form categories, geoelement types, and phytosociological preference groups). According to the species composition, we found a well-defined gradient, with the following habitat order: large forest patches, medium forest patches, small forest patches, north-facing edges, south-facing edges, and grasslands. A considerable number of species were shared among all habitats, while the number of species restricted to certain habitat types was also numerous, especially for north-facing edges. The total (i.e., pooled) number of species peaked near the middle of the gradient, in north-facing edges. The relative ecological indicator values and functional species groups showed mostly gradual changes from the large forest patches to the grasslands. Our results indicate that the widely used dichotomic categorization of forest-steppe habitats into forest and grassland patches is too simplistic, potentially resulting in a considerable loss of information. We suggest that forest-steppe vegetation better fits the gradient-based paradigm of landscape structure, which is able to reflect continuous variations.

5.
Ecol Evol ; 10(24): 13787-13795, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33391680

RESUMO

In the genus Aphaenogaster, workers use tools to transport liquid food to the colony. During this behavior, ants place or drop various kinds of debris into liquids or soft food, and then, they carry the food-soaked tools back to the nest. According to some authors, this behavior is not "true" tool use because it represents two separate processes: a defense response to cover the dangerous liquid and a transport of food. Here, we investigated the debris dropping and retrieving behavior of the ant Aphaenogaster subterranea to establish which of the two hypotheses is more probable by conducting manipulative experiments. We tested the responses of eight colonies (a) to liquid food (honey-water) and nonfood liquids (water) in different distances from the nest and (b) to nonthreatening liquids previously covered or presented as small droplets. We also tested whether the nutritional condition of colonies (i.e., starved or satiated) would affect the intensity and rate of debris dropping. Our results were consistent with the tool-using behavior hypothesis. Firstly, ants clearly differentiated between honey-water and water, and they directed more of their foraging effort toward liquids farther from the nest. Secondly, ants performed object dropping even into liquids that did not pose the danger of drowning or becoming entangled. Lastly, the nutritional condition of colonies had a significant effect on the intensity and rate of object dropping, but in the opposite direction than we expected. Our results suggest that the foraging behavior of A. subterranea is more complex than that predicted by the two-component behavior hypothesis and deserves to be considered as "true" tool use.

6.
Sci Rep ; 9(1): 7176, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073136

RESUMO

Fine-scale topographic complexity creates important microclimates that can facilitate species to grow outside their main distributional range and increase biodiversity locally. Enclosed depressions in karst landscapes ('dolines') are topographically complex environments which produce microclimates that are drier and warmer (equator-facing slopes) and cooler and moister (pole-facing slopes and depression bottoms) than the surrounding climate. We show that the distribution patterns of functional groups for organisms in two different phyla, Arthropoda (ants) and Tracheophyta (vascular plants), mirror this variation of microclimate. We found that north-facing slopes and bottoms of solution dolines in northern Hungary provided key habitats for ant and plant species associated with cooler and/or moister conditions. Contrarily, south-facing slopes of dolines provided key habitats for species associated with warmer and/or drier conditions. Species occurring on the surrounding plateau were associated with intermediate conditions. We conclude that karst dolines provide a diversity of microclimatic habitats that may facilitate the persistence of taxa with diverse environmental preferences, indicating these dolines to be potential safe havens for multiple phyla under local and global climate oscillations.


Assuntos
Formigas/fisiologia , Traqueófitas/fisiologia , Animais , Biodiversidade , Clima , Ecossistema , Umidade , Hungria , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA