Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(24): 9539-44, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22647598

RESUMO

The myotubularins are a large family of inositol polyphosphate 3-phosphatases that, despite having common substrates, subsume unique functions in cells that are disparate. The myotubularin family consists of 16 different proteins, 9 members of which possess catalytic activity, dephosphorylating phosphatidylinositol 3-phosphate [PtdIns(3)P] and phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P(2)] at the D-3 position. Seven members are inactive because they lack the conserved cysteine residue in the CX(5)R motif required for activity. We studied a subfamily of homologous myotubularins, including myotubularin-related protein 6 (MTMR6), MTMR7, and MTMR8, all of which dimerize with the catalytically inactive MTMR9. Complex formation between the active myotubularins and MTMR9 increases their catalytic activity and alters their substrate specificity, wherein the MTMR6/R9 complex prefers PtdIns(3,5)P(2) as substrate; the MTMR8/R9 complex prefers PtdIns(3)P. MTMR9 increased the enzymatic activity of MTMR6 toward PtdIns(3,5)P(2) by over 30-fold, and enhanced the activity toward PtdIns(3)P by only 2-fold. In contrast, MTMR9 increased the activity of MTMR8 by 1.4-fold and 4-fold toward PtdIns(3,5)P(2) and PtdIns(3)P, respectively. In cells, the MTMR6/R9 complex significantly increases the cellular levels of PtdIns(5)P, the product of PI(3,5)P(2) dephosphorylation, whereas the MTMR8/R9 complex reduces cellular PtdIns(3)P levels. Consequentially, the MTMR6/R9 complex serves to inhibit stress-induced apoptosis and the MTMR8/R9 complex inhibits autophagy.


Assuntos
Autofagia/fisiologia , Proteínas Tirosina Fosfatases não Receptoras/fisiologia , Catálise , Células HeLa , Humanos , Microscopia de Fluorescência , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Especificidade por Substrato
2.
Cell Metab ; 14(4): 466-77, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21982707

RESUMO

Osteoporosis is a multifactorial genetic disease characterized by reduction of bone mass due to dysregulation of osteoclast differentiation or maturation. Herein, we identified a regulator of osteoclastogenesis, the murine homolog of inositol polyphosphate 4-phosphatase type IIα (Inpp4bα). Expression of Inpp4bα is detected from early osteoclast differentiation to activation stage. Targeted expression of native Inpp4bα ex vivo repressed whereas phosphatase-inactive Inpp4bα stimulated osteoclast differentiation. Inpp4bα acts on intracellular calcium level that modulates NFATc1 nuclear translocation and activation. In vivo mice deficient in Inpp4b displayed increased osteoclast differentiation rate and potential resulting in decreased bone mass and osteoporosis. Importantly, INPP4B in human was identified as a susceptibility locus for osteoporosis. This study defined Inpp4b as a major modulator of the osteoclast differentiation and as a gene linked to variability of bone mineral density in mice and humans.


Assuntos
Densidade Óssea/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Cálcio/metabolismo , Diferenciação Celular , Regulação para Baixo , Humanos , Camundongos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Osteoclastos/enzimologia , Osteoporose/etiologia , Monoéster Fosfórico Hidrolases/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais
3.
PLoS One ; 5(1): e8909, 2010 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-20111715

RESUMO

BACKGROUND: Dendritic cells (DCs) are highly specialized cells, which capture antigen in peripheral tissues and migrate to lymph nodes, where they dynamically interact with and activate T cells. Both migration and formation of DC-T cell contacts depend on cytoskeleton plasticity. However, the molecular bases governing these events have not been completely defined. METHODOLOGY/PRINCIPAL FINDINGS: Utilizing a T cell-dependent model of arthritis, we find that PLCgamma2-/- mice are protected from local inflammation and bone erosion. PLCgamma2 controls actin remodeling in dendritic cells, thereby affecting their capacity to prime T cells. DCs from PLCgamma2-/- mice mature normally, however they lack podosomes, typical actin structures of motile cells. Absence of PLCgamma2 impacts both DC trafficking to the lymph nodes and migration towards CCL21. The interaction with T cells is also affected by PLCgamma2 deficiency. Mechanistically, PLCgamma2 is activated by CCL21 and modulates Rac activation. Rac1/2-/- DCs also lack podosomes and do not respond to CCL21. Finally, antigen pulsed PLCgamma2-/- DCs fail to promote T cell activation and induce inflammation in vivo when injected into WT mice. Conversely, injection of WT DCs into PLCgamma2-/- mice rescues the inflammatory response but not focal osteolysis, confirming the importance of PLCgamma2 both in immune and bone systems. CONCLUSIONS/SIGNIFICANCE: This study demonstrates a critical role for PLCgamma2 in eliciting inflammatory responses by regulating actin dynamics in DCs and positions the PLCgamma2 pathway as a common orchestrator of bone and immune cell functions during arthritis.


Assuntos
Actinas/metabolismo , Artrite/enzimologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Fosfolipase C gama/metabolismo , Animais , Artrite/patologia , Células Dendríticas/imunologia , Imunofluorescência , Ativação Linfocitária , Camundongos , Camundongos Knockout , Fosfolipase C gama/genética , Receptores CCR7/metabolismo , Transdução de Sinais
4.
Nat Genet ; 41(9): 1027-31, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19668215

RESUMO

The primary cilium is an antenna-like structure that protrudes from the cell surface of quiescent/differentiated cells and participates in extracellular signal processing. Here, we report that mice deficient for the lipid 5-phosphatase Inpp5e develop a multiorgan disorder associated with structural defects of the primary cilium. In ciliated mouse embryonic fibroblasts, Inpp5e is concentrated in the axoneme of the primary cilium. Inpp5e inactivation did not impair ciliary assembly but altered the stability of pre-established cilia after serum addition. Blocking phosphoinositide 3-kinase (PI3K) activity or ciliary platelet-derived growth factor receptor alpha (PDGFRalpha) restored ciliary stability. In human INPP5E, we identified a mutation affecting INPP5E ciliary localization and cilium stability in a family with MORM syndrome, a condition related to Bardet-Biedl syndrome. Together, our results show that INPP5E plays an essential role in the primary cilium by controlling ciliary growth factor and PI3K signaling and stability, and highlight the consequences of INPP5E dysfunction.


Assuntos
Cílios/metabolismo , Cílios/patologia , Mutação , Monoéster Fosfórico Hidrolases/genética , Transdução de Sinais/fisiologia , Animais , Síndrome de Bardet-Biedl/genética , Linhagem Celular , Núcleo Celular/metabolismo , Células Cultivadas , Cromonas/farmacologia , Cílios/genética , Cílios/ultraestrutura , Meios de Cultura Livres de Soro , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Inibidores Enzimáticos/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Técnica Direta de Fluorescência para Anticorpo , Corantes Fluorescentes/metabolismo , Ligação Genética , Marcadores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Indóis/metabolismo , Deficiência Intelectual/genética , Masculino , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Repetições de Microssatélites , Morfolinas/farmacologia , Obesidade/genética , Pênis/anormalidades , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Epitélio Pigmentado Ocular/citologia , Epitélio Pigmentado Ocular/metabolismo , Polimorfismo de Nucleotídeo Único , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Degeneração Retiniana/genética , Transfecção , Tubulina (Proteína)/metabolismo
5.
Nat Genet ; 41(9): 1032-6, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19668216

RESUMO

Phosphotidylinositol (PtdIns) signaling is tightly regulated both spatially and temporally by subcellularly localized PtdIns kinases and phosphatases that dynamically alter downstream signaling events. Joubert syndrome is characterized by a specific midbrain-hindbrain malformation ('molar tooth sign'), variably associated retinal dystrophy, nephronophthisis, liver fibrosis and polydactyly and is included in the newly emerging group of 'ciliopathies'. In individuals with Joubert disease genetically linked to JBTS1, we identified mutations in the INPP5E gene, encoding inositol polyphosphate-5-phosphatase E, which hydrolyzes the 5-phosphate of PtdIns(3,4,5)P3 and PtdIns(4,5)P2. Mutations clustered in the phosphatase domain and impaired 5-phosphatase activity, resulting in altered cellular PtdIns ratios. INPP5E localized to cilia in major organs affected by Joubert syndrome, and mutations promoted premature destabilization of cilia in response to stimulation. These data link PtdIns signaling to the primary cilium, a cellular structure that is becoming increasingly recognized for its role in mediating cell signals and neuronal function.


Assuntos
Cílios/patologia , Mutação , Fosfatidilinositóis/genética , Monoéster Fosfórico Hidrolases/genética , Transdução de Sinais/genética , Acetilação , Substituição de Aminoácidos , Animais , Sequência de Bases , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Domínio Catalítico , Linhagem Celular , Cromossomos Humanos Par 9 , Cílios/enzimologia , Consanguinidade , Meios de Cultura Livres de Soro , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Ligação Genética , Proteínas de Fluorescência Verde/metabolismo , Haplótipos , Homozigoto , Humanos , Hidrólise , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatos de Fosfatidilinositol/genética , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Mapeamento Físico do Cromossomo , Epitélio Pigmentado Ocular/citologia , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Radiografia , Soro/metabolismo , Tubulina (Proteína)/metabolismo
7.
Proc Natl Acad Sci U S A ; 104(43): 16834-9, 2007 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17940011

RESUMO

A recently discovered phosphatidylinositol monophosphate, phosphatidylinositol 5-phosphate (PtdIns-5-P), plays an important role in nuclear signaling by influencing p53-dependent apoptosis. It interacts with a plant homeodomain finger of inhibitor of growth protein-2, causing an increase in the acetylation and stability of p53. Here we show that type I phosphatidylinositol-4,5-bisphosphate 4-phosphatase (type I 4-phosphatase), an enzyme that dephosphorylates phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P(2)), forming PtdIns-5-P in vitro, can increase the cellular levels of PtdIns-5-P. When HeLa cells were treated with the DNA-damaging agents etoposide or doxorubicin, type I 4-phosphatase translocated to the nucleus and nuclear levels of PtdIns-5-P increased. This action resulted in increased p53 acetylation, which stabilized p53, leading to increased apoptosis. Overexpression of type I 4-phosphatase increased apoptosis, whereas RNAi of the enzyme diminished it. The half-life of p53 was shortened from 7 h to 1.8 h upon RNAi of type I 4-phosphatase. This enzyme therefore controls nuclear levels of PtdIns-5-P and thereby p53-dependent apoptosis.


Assuntos
Apoptose , Estresse Oxidativo , Monoéster Fosfórico Hidrolases/metabolismo , Acetilação , Linhagem Celular , Núcleo Celular/enzimologia , Células HeLa , Proteínas de Homeodomínio/metabolismo , Humanos , Modelos Biológicos , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo , Termodinâmica , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo
8.
Proc Natl Acad Sci U S A ; 102(52): 18854-9, 2005 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-16365287

RESUMO

Numerous inositol polyphosphate 5-phosphatases catalyze the degradation of phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P(2)) to phosphatidylinositol-4-phosphate (PtdIns-4-P). An alternative pathway to degrade PtdIns-4,5-P(2) is the hydrolysis of PtdIns-4,5-P(2) by a 4-phosphatase, leading to the production of PtdIns-5-P. Whereas the bacterial IpgD enzyme is known to catalyze this reaction, no such mammalian enzyme has been found. We have identified and characterized two previously undescribed human enzymes, PtdIns-4,5-P(2) 4-phosphatase type I and type II, which catalyze the hydrolysis of PtdIns-4,5-P(2) to phosphatidylinositol-5-phosphate (PtdIns-5-P). Both enzymes are ubiquitously expressed and localize to late endosomal/lysosomal membranes in epithelial cells. Overexpression of either enzyme in HeLa cells increases EGF-receptor degradation upon EGF stimulation.


Assuntos
Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Northern Blotting , Burkholderia pseudomallei/metabolismo , Células COS , Catálise , Linhagem Celular , Chlorocebus aethiops , Clonagem Molecular , DNA Complementar/metabolismo , Endossomos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Corantes Fluorescentes/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Hidrólise , Inositol Polifosfato 5-Fosfatases , Lisossomos/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Fosfatidilinositóis/química , Monoéster Fosfórico Hidrolases/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fatores de Tempo , Distribuição Tecidual , Transfecção
9.
Mol Cell Biol ; 25(10): 3956-66, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15870270

RESUMO

The phosphoinositide phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] regulates the activity of many actin-binding proteins and as such is an important modulator of cytoskeleton organization during cell migration, for example. In migrating cells actin remodeling is tightly regulated and localized; therefore, how the PI(4,5)P2 level is spatially and temporally regulated is crucial to understanding how it controls cell migration. Here we show that the LIM protein Ajuba contributes to the cellular regulation of PI(4,5)P2 levels by interacting with and activating the enzymatic activity of the PI(4)P 5-kinase (PIPKIalpha), the predominant enzyme in the synthesis of PI(4,5)P2, in a migration stimulus-regulated manner. In migrating primary mouse embryonic fibroblasts (MEFs) from Ajuba(-/-) mice the level of PI(4,5)P2 was decreased with a corresponding increase in the level of the substrate PI(4)P. Reintroduction of Ajuba into these cells normalized PI(4,5)P2 levels. Localization of PI(4,5)P2 synthesis and PIPKIalpha in the leading lamellipodia and membrane ruffles, respectively, of migrating Ajuba(-/-) MEFs was impaired. In vitro, Ajuba dramatically activated the enzymatic activity of PIPKIalpha while inhibiting the activity of PIPKIIbeta. Thus, in addition to its effects upon Rac activity Ajuba can also influence cell migration through regulation of PI(4,5)P2 synthesis through direct activation of PIPKIalpha enzyme activity.


Assuntos
Movimento Celular , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Linhagem Celular , Ativação Enzimática , Fibroblastos/citologia , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Deleção de Genes , Proteínas de Homeodomínio/genética , Humanos , Proteínas com Domínio LIM , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido
10.
Mol Biol Cell ; 16(5): 2218-33, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15716355

RESUMO

Endosomal trafficking is regulated by the recruitment of effector proteins to phosphatidylinositol 3-phosphate [PtdIns(3)P] on early endosomes. At the plasma membrane, phosphatidylinositol-(3,4)-bisphosphate [PtdIns(3,4)P2] binds the pleckstrin homology (PH) domain-containing proteins Akt and TAPP1. Type Ialpha inositol polyphosphate 4-phosphatase (4-phosphatase) dephosphorylates PtdIns(3,4)P2, forming PtdIns(3)P, but its subcellular localization is unknown. We report here in quiescent cells, the 4-phosphatase colocalized with early and recycling endosomes. On growth factor stimulation, 4-phosphatase endosomal localization persisted, but in addition the 4-phosphatase localized at the plasma membrane. Overexpression of the 4-phosphatase in serum-stimulated cells increased cellular PtdIns(3)P levels and prevented wortmannin-induced endosomal dilatation. Furthermore, mouse embryonic fibroblasts from homozygous Weeble mice, which have a mutation in the type I 4-phosphatase, exhibited dilated early endosomes. 4-Phosphatase translocation to the plasma membrane upon growth factor stimulation inhibited the recruitment of the TAPP1 PH domain. The 4-phosphatase contains C2 domains, which bound PtdIns(3,4)P2, and C2-domain-deletion mutants lost PtdIns(3,4)P2 4-phosphatase activity, did not localize to endosomes or inhibit TAPP1 PH domain membrane recruitment. The 4-phosphatase therefore both generates and terminates phosphoinositide 3-kinase signals at distinct subcellular locations.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Androstadienos/farmacologia , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Células CHO , Células COS , Membrana Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Endossomos/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Humanos , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Mutantes , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fase de Repouso do Ciclo Celular , Transdução de Sinais , Transfecção , Wortmanina , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
11.
J Biol Chem ; 277(35): 31857-62, 2002 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-12084730

RESUMO

The enzyme(s) responsible for the production of inositol hexakisphosphate (InsP(6)) in vertebrate cells are unknown. In fungal cells, a 2-kinase designated Ipk1 is responsible for synthesis of InsP(6) by phosphorylation of inositol 1,3,4,5,6-pentakisphosphate (InsP(5)). Based on limited conserved sequence motifs among five Ipk1 proteins from different fungal species, we have identified a human genomic DNA sequence on chromosome 9 that encodes human inositol 1,3,4,5,6-pentakisphosphate 2-kinase (InsP(5) 2-kinase). Recombinant human enzyme was produced in Sf21 cells, purified, and shown to catalyze the synthesis of InsP(6) or phytic acid in vitro. The recombinant protein converted 31 nmol of InsP(5) to InsP(6)/min/mg of protein (V(max)). The Michaelis-Menten constant for InsP(5) was 0.4 microM and for ATP was 21 microM. Saccharomyces cerevisiae lacking IPK1 do not produce InsP(6) and show lethality in combination with a gle1 mutant allele. Here we show that expression of the human InsP(5) 2-kinase in a yeast ipk1 null strain restored the synthesis of InsP(6) and rescued the gle1-2 ipk1-4 lethal phenotype. Northern analysis on human tissues showed expression of the human InsP(5) 2-kinase mRNA predominantly in brain, heart, placenta, and testis. The isolation of the gene responsible for InsP(6) synthesis in mammalian cells will allow for further studies of the InsP(6) signaling functions.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ácido Fítico/biossíntese , Sequência de Aminoácidos , Animais , Anopheles/enzimologia , Caenorhabditis elegans/enzimologia , Clonagem Molecular , Drosophila melanogaster/enzimologia , Humanos , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/química , Proteínas Recombinantes/química , Saccharomyces cerevisiae/genética , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Vertebrados
12.
J Biol Chem ; 277(8): 6266-72, 2002 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-11706019

RESUMO

Phosphoinositide-specific inositol polyphosphate 5- phosphatase IV has the affinity for PI(3,4,5)P(3) (K(m) = 0.65 microM) that is approximately 10-fold greater than the other inositol polyphosphate 5-phosphatases, which use this substrate including SHIP, OCRL, and 5ptase II, suggesting that it may be important in controlling intracellular levels of this metabolite. We created cell lines stably expressing the enzyme to study its effect on cell function. We found that overexpression of 5ptase IV in 293 cells caused the rapid depletion of both PI(4,5)P(2) and PI(3,4,5)P(3) in cells with corresponding increases in the products, PI(4)P and PI(3,4)P(2), changing the balance of two phosphoinositol products of phosphoinositide 3-kinase, PI(3,4)P(2) and PI(3,4,5)P(3), in the cell. One of the targets of these phosphoinositides is the serine/threonine kinase Akt, which plays an important role in the control of apoptosis. We were able to address the relative roles of PI(3,4)P(2) and PI(3,4,5)P(3) in the activation of Akt by selective depletion of these phosphoinositides in cells stably transfected with 5ptase IV and inositol polyphosphate 4-phosphatase (4ptase I). In cells transfected with 4ptase I, the level of PI(3,4)P(2) was reduced, and PI(3,4,5)P(3) was increased. Expression of the two enzymes had the opposite effect on the phosphorylation of Akt in response to stimulation with growth factors or heat shock. Akt phosphorylation was inhibited in cells expressing 5ptase IV but increased in 4ptase I cells and correlated with the intracellular level of PI(3,4,5)P(3) and not that of PI(3,4)P(2). The inhibition of Akt phosphorylation in cells expressing 5ptase IV makes them highly susceptible to FAS-induced apoptosis, whereas overexpressing of the 4ptase I protects cells from apoptosis. Our results place 5ptase IV as a relevant biological regulator of PI3K/Akt pathway in cells.


Assuntos
Apoptose/fisiologia , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Clonagem Molecular , Genes myc , Humanos , Inositol Polifosfato 5-Fosfatases , Cinética , Nocodazol/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA