Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227156

RESUMO

Reelin, a secreted glycoprotein, plays a crucial role in guiding neocortical neuronal migration, dendritic outgrowth and arborization, and synaptic plasticity in the adult brain. Reelin primarily operates through the canonical lipoprotein receptors apolipoprotein E receptor 2 (Apoer2) and very low-density lipoprotein receptor (Vldlr). Reelin also engages with non-canonical receptors and unidentified co-receptors; however, the effects of which are less understood. Using high-throughput tandem mass tag LC-MS/MS-based proteomics and gene set enrichment analysis, we identified both shared and unique intracellular pathways activated by Reelin through its canonical and non-canonical signaling in primary murine neurons of either sex during dendritic growth and arborization. We observed pathway crosstalk related to regulation of cytoskeleton, neuron projection development, protein transport, and actin filament-based process. We also found enriched gene sets exclusively by the non-canonical Reelin pathway including protein translation, mRNA metabolic process and ribonucleoprotein complex biogenesis suggesting Reelin fine-tunes neuronal structure through distinct signaling pathways. A key discovery is the identification of aldolase A, a glycolytic enzyme and actin binding protein, as a novel effector of Reelin signaling. Reelin induced de novo translation and mobilization of aldolase A from the actin cytoskeleton. We demonstrated that aldolase A is necessary for Reelin-mediated dendrite growth and arborization in primary murine neurons and mouse brain cortical neurons. Interestingly, the function of aldolase A in dendrite development is independent of its known role in glycolysis. Altogether, our findings provide new insights into the Reelin-dependent signaling pathways and effector proteins that are crucial for dendritic development.Significance Statement Reelin is an extracellular glycoprotein that exerts its function primarily by binding to the canonical lipoprotein receptors Apoer2 and Vldlr. Reelin is best known for its role in neuronal migration during prenatal brain development. Reelin also signals through a non-canonical pathway outside of Apoer2/Vldlr; however, these receptors and signal transduction pathways are less defined. Here, we examined Reelin's role during dendritic outgrowth in primary murine neurons and identified shared and distinct pathways activated by canonical and non-canonical Reelin signaling. We also found aldolase A as a novel effector of Reelin signaling, that functions independently of its known metabolic role, highlighting Reelin's influence on neuronal structure and growth.

2.
PLoS Genet ; 20(7): e1011348, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39038048

RESUMO

Disrupted alternative splicing plays a determinative role in neurological diseases, either as a direct cause or as a driver in disease susceptibility. Transcriptomic profiling of aged human postmortem brain samples has uncovered hundreds of aberrant mRNA splicing events in Alzheimer's disease (AD) brains, associating dysregulated RNA splicing with disease. We previously identified a complex array of alternative splicing combinations across apolipoprotein E receptor 2 (APOER2), a transmembrane receptor that interacts with both the neuroprotective ligand Reelin and the AD-associated risk factor, APOE. Many of the human APOER2 isoforms, predominantly featuring cassette splicing events within functionally important domains, are critical for the receptor's function and ligand interaction. However, a comprehensive repertoire and the functional implications of APOER2 isoforms under both physiological and AD conditions are not fully understood. Here, we present an in-depth analysis of the splicing landscape of human APOER2 isoforms in normal and AD states. Using single-molecule, long-read sequencing, we profiled the entire APOER2 transcript from the parietal cortex and hippocampus of Braak stage IV AD brain tissues along with age-matched controls and investigated several functional properties of APOER2 isoforms. Our findings reveal diverse patterns of cassette exon skipping for APOER2 isoforms, with some showing region-specific expression and others unique to AD-affected brains. Notably, exon 15 of APOER2, which encodes the glycosylation domain, showed less inclusion in AD compared to control in the parietal cortex of females with an APOE ɛ3/ɛ3 genotype. Also, some of these APOER2 isoforms demonstrated changes in cell surface expression, APOE-mediated receptor processing, and synaptic number. These variations are likely critical in inducing synaptic alterations and may contribute to the neuronal dysfunction underlying AD pathogenesis.


Assuntos
Processamento Alternativo , Doença de Alzheimer , Proteínas Relacionadas a Receptor de LDL , Proteína Reelina , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Processamento Alternativo/genética , Isoformas de Proteínas/genética , Análise de Sequência de RNA , Feminino , Idoso , Encéfalo/metabolismo , Encéfalo/patologia , Apolipoproteínas E/genética , Masculino , Hipocampo/metabolismo , Hipocampo/patologia , Idoso de 80 Anos ou mais , Splicing de RNA/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
3.
Brain Res ; 1817: 148496, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499733

RESUMO

Generation of amyloid-ß (Aß) peptides through the proteolytic processing of the amyloid precursor protein (APP) is a pathogenic event in Alzheimer's disease (AD). APP is a transmembrane protein and endocytosis of APP mediated by the YENPTY motif is a key step in Aß generation. Mints, a family of cytosolic adaptor proteins, directly bind to the YENPTY motif of APP and facilitate APP trafficking and processing. Here, we generated and examined two Mint1 mutants, Tyr633Ala of Mint1 (Mint1Y633A) that enhanced APP binding, and Tyr549Ala and Phe610Ala mutant (Mint1Y549A/F610A), that reduced APP binding. We investigated how perturbing the APP-Mint1 interaction through these Mint1 mutants alter APP and Mint1 cellular dynamics and Mint1's interaction with its other binding partners. We found that Mint1Y633A increased binding affinity specifically for APP and presenilin1 (catalytic subunit of γ-secretase), that subsequently enhanced APP endocytosis in primary murine neurons. Conversely, Mint1Y549A/F610A exhibited reduced APP affinity and Aß secretion. The effect of Mint1Y549A/F610A on Aß release was greater compared to knocking down all three Mint proteins supporting the APP-Mint1 interaction is a critical factor in Aß production. Altogether, this study highlights the potential of targeting the APP-Mint1 interaction as a therapeutic strategy for AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Neurônios/metabolismo
4.
Nat Commun ; 14(1): 1848, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012278

RESUMO

Coacervation via liquid-liquid phase separation provides an excellent opportunity to address the challenges of designing nanostructured biomaterials with multiple functionalities. Protein-polysaccharide coacervates, in particular, offer an appealing strategy to target biomaterial scaffolds, but these systems suffer from the low mechanical and chemical stabilities of protein-based condensates. Here we overcome these limitations by transforming native proteins into amyloid fibrils and demonstrate that the coacervation of cationic protein amyloids and anionic linear polysaccharides results in the interfacial self-assembly of biomaterials with precise control of their structure and properties. The coacervates present a highly ordered asymmetric architecture with amyloid fibrils on one side and the polysaccharide on the other. We demonstrate the excellent performance of these coacervates for gastric ulcer protection by validating via an in vivo assay their therapeutic effect as engineered microparticles. These results point at amyloid-polysaccharides coacervates as an original and effective biomaterial for multiple uses in internal medicine.


Assuntos
Amiloide , Nanoestruturas , Amiloide/química , Polissacarídeos/metabolismo , Proteínas Amiloidogênicas
5.
Soft Matter ; 16(25): 5806-5811, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32469030

RESUMO

Switchable adhesives have the potential to improve the manufacturing and recycling of parts, and to enable new modes of motility for soft robots. Here, we demonstrate magnetically-switchable adhesion of a two-phase composite to non-magnetic objects. The composite's continuous phase is a silicone elastomer, and the dispersed phase is a magneto-rheological fluid. The composite is simple to prepare, and to mold into different shapes. When a magnetic field is applied, the magneto-rheological fluid develops a yield stress, which dramatically enhances the composite's adhesive properties. We demonstrate up to a nine-fold increase of the pull-off force of non-magnetic objects in the presence of a 250 mT field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA