Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 38(17): e9856, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38945695

RESUMO

RATIONALE: To uphold the integrity of horseracing and equestrian sports, it is critical for an equine doping control laboratory to develop a comprehensive screening method to cover a wide range of target substances at the required detection levels in equine urine. METHODS: The procedure involved the enzymatic hydrolysis of 3 mL urine samples followed by solid-phase extraction using HF Bond Elut C18 cartridge. The resulting extracts were then separated on a C18 reversed-phase column and analyzed using liquid chromatography/high-resolution mass spectrometry (LC/HRMS) in both electrospray ionization positive and negative modes in two separate injections. The analytical data were obtained in full scan and product ion scan (PIS) modes in an 11 min LC run. RESULTS: The method can detect 1011 compounds (in both positive and negative ion modes). Over 95% of the target compounds have limits of detections (LODs) ≤10 ng/mL, and more than 50% of the LODs are ≤0.5 ng/mL. The lowest LOD can reach down to 0.01 ng/mL. The applicability of the method was demonstrated by the successful detection of prohibited substances in overseas and domestic equine urine samples. CONCLUSIONS: We have successfully developed a regular screening method for equine urine samples that can detect more than 1000 compounds at sub-ppb levels in both positive and negative ion modes with full scan and PIS using LC/HRMS. Furthermore, this method can theoretically be expanded to accommodate an unlimited number of prohibited substances in full-scan mode.


Assuntos
Dopagem Esportivo , Limite de Detecção , Animais , Cavalos/urina , Dopagem Esportivo/prevenção & controle , Cromatografia Líquida/métodos , Detecção do Abuso de Substâncias/métodos , Detecção do Abuso de Substâncias/veterinária , Espectrometria de Massas/métodos , Extração em Fase Sólida/métodos , Reprodutibilidade dos Testes
2.
Proc Natl Acad Sci U S A ; 119(14): e2111565119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344437

RESUMO

SignificanceStrigolactones (SLs) are a group of apocarotenoid hormones, which regulates shoot branching and other diverse developmental processes in plants. The major bioactive form(s) of SLs as endogenous hormones has not yet been clarified. Here, we identify an Arabidopsis methyltransferase, CLAMT, responsible for the conversion of an inactive precursor to a biologically active SL that can interact with the SL receptor in vitro. Reverse genetic analysis showed that this enzyme plays an essential role in inhibiting shoot branching. This mutant also contributed to specifying the SL-related metabolites that could move from root to shoot in grafting experiments. Our work has identified a key enzyme necessary for the production of the bioactive form(s) of SLs.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Hormônios/metabolismo , Lactonas/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo
4.
Nat Commun ; 10(1): 191, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643123

RESUMO

The perception mechanism for the strigolactone (SL) class of plant hormones has been a subject of debate because their receptor, DWARF14 (D14), is an α/ß-hydrolase that can cleave SLs. Here we show via time-course analyses of SL binding and hydrolysis by Arabidopsis thaliana D14, that the level of uncleaved SL strongly correlates with the induction of the active signaling state. In addition, we show that an AtD14D218A catalytic mutant that lacks enzymatic activity is still able to complement the atd14 mutant phenotype in an SL-dependent manner. We conclude that the intact SL molecules trigger the D14 active signaling state, and we also describe that D14 deactivates bioactive SLs by the hydrolytic degradation after signal transmission. Together, these results reveal that D14 is a dual-functional receptor, responsible for both the perception and deactivation of bioactive SLs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lactonas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Proteínas de Arabidopsis/genética , Domínio Catalítico/genética , Hidrólise , Mutação , Oryza/genética , Oryza/metabolismo , Plantas Geneticamente Modificadas , Receptores de Superfície Celular/genética
5.
J Exp Bot ; 69(9): 2231-2239, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29522151

RESUMO

Strigolactones (SLs) can be classified into two structurally distinct groups: canonical and non-canonical SLs. Canonical SLs contain the ABCD ring system, and non-canonical SLs lack the A, B, or C ring but have the enol ether-D ring moiety, which is essential for biological activities. The simplest non-canonical SL is the SL biosynthetic intermediate carlactone. In plants, carlactone and its oxidized metabolites, such as carlactonoic acid and methyl carlactonoate, are present in root and shoot tissues. In some plant species, including black oat (Avena strigosa), sunflower (Helianthus annuus), and maize (Zea mays), non-canonical SLs in the root exudates are major germination stimulants. Various plant species, such as tomato (Solanum lycopersicum), Arabidopsis, and poplar (Populus spp.), release carlactonoic acid into the rhizosphere. These observations suggest that both canonical and non-canonical SLs act as host-recognition signals in the rhizosphere. In contrast, the limited distribution of canonical SLs in the plant kingdom, and the structure-specific and stereospecific transportation of canonical SLs from roots to shoots, suggest that plant hormones inhibiting shoot branching are not canonical SLs but, rather, are non-canonical SLs.


Assuntos
Germinação , Lactonas/química , Reguladores de Crescimento de Plantas/química , Fenômenos Fisiológicos Vegetais , Plantas/química , Lactonas/metabolismo , Micorrizas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Plantas/metabolismo , Plantas/microbiologia
6.
J Pestic Sci ; 42(2): 58-61, 2017 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30363140

RESUMO

One of the germination stimulants for root parasitic weeds produced by maize (Zea mays) was isolated and named methyl zealactonoate (1). Its structure was determined to be methyl (2E,3E)-4-((RS)-3,3-dimethyl-2-(3-methylbut-2-en-2-yl)-5-oxotetrahydrofuran-2-yl)-2-((((R)-4-methyl-5-oxo-2,5-dihydrofran-2-yl)oxy)methylene)but-3-enoate using by 1D and 2D NMR spectroscopy and ESI and EI-MS spectrometry. Feeding experiments with 13C-carlactone (CL), a biosynthetic intermediate for strigolactones, confirmed that 1 is produced from CL in maize. Methyl zealactonoate strongly elicits Striga hermonthica and Phelipanche ramosa seed germination, while Orobanche minor seeds are 100-fold less sensitive to this stimulant.

7.
J Pestic Sci ; 41(2): 55-58, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30363099

RESUMO

Strigolactones (SLs) are carotenoid-derived signaling molecules that mediate symbiotic and parasitic communications in the rhizosphere and plant hormones that regulate the growth and development of plants through crosstalk with other hormones. Natural SLs are classified into two groups based on the stereochemistry of the B-C ring junction. Rice and sorghum plants, both gramineous crops, produce orobanchol-type and strigol-type SLs, respectively, while tobacco plants produce both types. In the present study, we demonstrate that such species-specific phenomena in SL production also occur in the transport of exogenous SLs from roots to shoots. In rice plants, strigol-type SLs such as 5-deoxystrigol have been reported to actively inhibit tiller bud outgrowth, whereas root-applied strigol-type SLs could not be detected in shoots harvested 20 hr after treatment, indicating that metabolites of SLs or other signaling compounds downstream of SLs-but not SLs themselves-are the true inhibitors of tiller bud outgrowth.

8.
New Phytol ; 206(3): 983-989, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25754513

RESUMO

Strigolactones released from plant roots trigger both seed germination of parasitic weeds such as Striga spp. and hyphal branching of the symbionts arbuscular mycorrhizal (AM) fungi. Generally, strigolactone composition in exudates is quantitatively and qualitatively different among plants, which may be involved in susceptibility and host specificity in the parasite-plant interactions. We hypothesized that difference in strigolactone composition would have a significant impact on compatibility and host specificity/preference in AM symbiosis. Strigolactones in root exudates of Striga-susceptible (Pioneer 3253) and -resistant (KST 94) maize (Zea mays) cultivars were characterized by LC-MS/MS combined with germination assay using Striga hermonthica seeds. Levels of colonization and community compositions of AM fungi in the two cultivars were investigated in field and glasshouse experiments. 5-Deoxystrigol was exuded exclusively by the susceptible cultivar, while the resistant cultivar mainly exuded sorgomol. Despite the distinctive difference in strigolactone composition, the levels of AM colonization and the community compositions were not different between the cultivars. The present study demonstrated that the difference in strigolactone composition has no appreciable impact on AM symbiosis, at least in the two maize cultivars, and further suggests that the traits involved in Striga-resistance are not necessarily accompanied by reduction in compatibility to AM fungi.


Assuntos
Interações Hospedeiro-Parasita , Lactonas/metabolismo , Micorrizas/fisiologia , Striga/fisiologia , Zea mays/parasitologia , Especificidade de Hospedeiro , Lactonas/química , Lactonas/isolamento & purificação , Extratos Vegetais/química , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Simbiose , Zea mays/química , Zea mays/metabolismo
9.
Planta ; 241(3): 687-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25417194

RESUMO

MAIN CONCLUSION: Nitrogen and phosphorus fertilization in one side of split-root sorghum plants systemically reduced root contents of strigolactones in both sides of the split roots. Shoot-derived signals other than auxin appeared to be involved in this process. Strigolactones (SLs) are a novel class of plant hormones regulating both shoot and root architectures and suggested to be functioning downstream of auxin. The levels of SLs in plant tissues and root exudates are regulated by nutrients, especially phosphorus (P) and nitrogen (N); however, the underlying mechanism remains elusive. We examined the effects of N and P fertilization on root contents of two SLs, sorgomol and 5-deoxystrigol, in sorghum plants pre-incubated under N and P free conditions using a split-root system. N and P fertilization to one side of the split-root plants systemically reduced root contents of SLs in both sides of the split roots. The shoot N and P levels increased when one side of the split-root plants was fertilized, while N and P levels in the non-fertilized split roots were unaffected. N fertilization decreased shoot and root IAA (indole-3-acetic acid) levels, while P fertilization did not affect them. IAA applied to the shoot apices increased root contents of 5-deoxystrigol but not that of sorgomol only when the plants were grown under P free conditions. Shoot (leaf) removal dramatically decreased the root contents of SLs but did not affect root IAA levels, and IAA applied to the stumps of leaves could not restore root contents of SLs. Consequently, shoot-derived signals other than auxin are suggested to be involved in the regulation of SL production in roots.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Sorghum/metabolismo , Fertilizantes , Ácidos Indolacéticos , Ftalimidas
10.
Proc Natl Acad Sci U S A ; 111(50): 18084-9, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25425668

RESUMO

Strigolactones (SLs) stimulate seed germination of root parasitic plants and induce hyphal branching of arbuscular mycorrhizal fungi in the rhizosphere. In addition, they have been classified as a new group of plant hormones essential for shoot branching inhibition. It has been demonstrated thus far that SLs are derived from carotenoid via a biosynthetic precursor carlactone (CL), which is produced by sequential reactions of DWARF27 (D27) enzyme and two carotenoid cleavage dioxygenases CCD7 and CCD8. We previously found an extreme accumulation of CL in the more axillary growth1 (max1) mutant of Arabidopsis, which exhibits increased lateral inflorescences due to SL deficiency, indicating that CL is a probable substrate for MAX1 (CYP711A1), a cytochrome P450 monooxygenase. To elucidate the enzymatic function of MAX1 in SL biosynthesis, we incubated CL with a recombinant MAX1 protein expressed in yeast microsomes. MAX1 catalyzed consecutive oxidations at C-19 of CL to convert the C-19 methyl group into carboxylic acid, 9-desmethyl-9-carboxy-CL [designated as carlactonoic acid (CLA)]. We also identified endogenous CLA and its methyl ester [methyl carlactonoate (MeCLA)] in Arabidopsis plants using LC-MS/MS. Although an exogenous application of either CLA or MeCLA suppressed the growth of lateral inflorescences of the max1 mutant, MeCLA, but not CLA, interacted with Arabidopsis thaliana DWARF14 (AtD14) protein, a putative SL receptor, as shown by differential scanning fluorimetry and hydrolysis activity tests. These results indicate that not only known SLs but also MeCLA are biologically active in inhibiting shoot branching in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Vias Biossintéticas/fisiologia , Ácidos Carboxílicos/metabolismo , Lactonas/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Cromatografia Líquida , Clonagem Molecular , Escherichia coli , Ésteres/metabolismo , Vetores Genéticos/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Espectrometria de Massas em Tandem , Leveduras
11.
J Agric Food Chem ; 62(29): 7063-71, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24974726

RESUMO

Faba bean yield is severely constrained in the Mediterranean region and Middle East by the parasitic weeds Orobanche crenata, O. foetida, and Phelipanche aegyptiaca. Seed germination of these weeds is triggered upon recognition of host root exudates. Only recently faba bean accessions have been identified with resistance based in low induction of parasitic seed germination, but the underlying mechanism was not identified. Strigolactones are a group of terpenoid lactones involved in the host recognition by parasitic plants. Our LC-MS/MS analysis of root exudates of the susceptible accession Prothabon detected orobanchol, orobanchyl acetate, and a novel germination stimulant. A time course analysis indicated that their concentration increased with plant age. However, low or undetectable amounts of these germination stimulants were detected in root exudates of the resistant lines Quijote and Navio at all plant ages. A time course analysis of seed germination induced by root exudates of each faba bean accession indicated important differences in the ability to stimulate parasitic germination. Results presented here show that resistance to parasitic weeds based on low strigolactone exudation does exist within faba bean germplasm. Therefore, selection for this trait is feasible in a breeding program. The remarkable fact that low induction of germination is similarly operative against O. crenata, O. foetida, and P. aegyptiaca reinforces the value of this resistance.


Assuntos
Cruzamento , Lactonas/metabolismo , Orobanche/fisiologia , Raízes de Plantas/metabolismo , Vicia faba/fisiologia , Cromatografia Líquida de Alta Pressão , Germinação , Espectrometria de Massas em Tandem
12.
Phytochemistry ; 103: 85-88, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24768285

RESUMO

Root exudates from the allelopathic plant, black oat (Avena strigosa Schreb.), were found to contain at least six different germination stimulants for root parasitic plants, but no known strigolactones (SLs). One of these germination stimulants was purified and named avenaol. Its HR-ESI-TOFMS analysis indicated that the molecular formula of avenaol is C20H24O7, and thus it contains an additional carbon compared with known C19-SLs. Its structure was determined as 5-((E)-(5-(3-hydroxy-1,5,5-trimethyl-2-oxobicyclo[4.1.0]heptan-7-yl)-2-oxodihydrofuran-3(2H)-ylidene)methoxy)-3-methylfuran-2(5H)-one, by 1D and 2D NMR spectroscopy, and ESI- and EI-MS spectrometry. Although avenaol contains the C-D moiety, the common structural feature for all known SLs, it lacks the B ring and has an additional carbon atom between the A and C rings. Avenaol is a potent germination stimulant of Phelipanche ramosa seeds, but only a weak stimulant for seeds of Striga hermonthica and Orobanche minor.


Assuntos
Germinação/efeitos dos fármacos , Lactonas/química , Lactonas/farmacologia , Exsudatos de Plantas/química , Raízes de Plantas/química , Poaceae/química , Orobanche/efeitos dos fármacos , Exsudatos de Plantas/farmacologia , Striga/efeitos dos fármacos
13.
Planta ; 238(5): 885-94, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23925853

RESUMO

Strigolactones (SLs) are essential host recognition signals for both root parasitic plants and arbuscular mycorrhizal fungi, and SLs or their metabolites function as a novel class of plant hormones regulating shoot and root architecture. Our previous study indicated that nitrogen (N) deficiency as well as phosphorus (P) deficiency in sorghum enhanced root content and exudation of 5-deoxystrigol, one of the major SLs produced by sorghum. In the present study, we examined how N and P fertilization affects SL production and exudation in sorghum plants subjected to short- (5 days) or long-term (10 days) N or P deficiency and demonstrated their common and distinct features. The root contents and exudation of SLs in the N- or P-deficient sorghum plants grown for 6, 12 or 24 h with or without N or P fertilization were quantified by LC-MS/MS. In general, without fertilization, root contents and exudation of SLs stayed at similar levels at 6 and 12 h and then significantly increased at 24 h. The production of SLs responded more quickly to P fertilization than the secretion of SLs, while regulation of SL secretion began earlier after N fertilization. It is suggested that sorghum plants regulate SL production and exudation when they are subjected to nutrient deficiencies depending on the type of nutrient and degree of deficiency.


Assuntos
Fertilizantes , Compostos Heterocíclicos com 3 Anéis/metabolismo , Lactonas/metabolismo , Nitrogênio/farmacologia , Fósforo/farmacologia , Sorghum/efeitos dos fármacos , Sorghum/metabolismo , Compostos Heterocíclicos com 3 Anéis/química , Lactonas/química , Nitrogênio/deficiência , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Sorghum/crescimento & desenvolvimento
14.
Phytochemistry ; 87: 60-4, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23290861

RESUMO

(+)-Strigone was described earlier in a paper on isolation of strigol and then recently examined for hyphal branching activity in arbuscular mycorrhizal fungi as a strigolactone. Herein, it was isolated from root exudates of Houttuynia cordata, and its structure was confirmed by direct comparison with synthetic standards in LC-MS/MS, GC-MS, and (1)H and (13)C NMR analyses. The stereochemistry of strigone was determined by comparing the CD spectra and RR(t) in chiral LC-MS/MS with those of synthetic (+)-strigone and (-)-strigone. Four stereoisomers of strigone exhibited clearly different levels of stimulation activity on the seeds of three root parasitic plants, Orobanche minor, Phelipanche ramosa, and Striga hermonthica. (+)-Strigone was a highly potent germination stimulant on S. hermonthica and also on P. ramosa, but less active than ent-2'-epi-strigone on O. minor. In addition to strigone, H. cordata was found to produce strigol, sorgomol, and 5-deoxystrigol, indicating that this plant produces mainly strigol-type strigolactones derived from 5-deoxystrigol.


Assuntos
Houttuynia/química , Lactonas , Estrutura Molecular , Orobanche/química , Saururaceae/química , Striga/química
15.
Mol Plant ; 6(1): 153-63, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23204500

RESUMO

Major strigolactones (SLs) produced by rice (Oryza sativa L. cv. Nipponbare) and tobacco (Nicotiana tabacum L. cv. Michinoku No. 1) were purified and their stereochemical structures were determined by comparing with optically pure synthetic standards for their NMR and CD data and retention times and mass fragmentations in ESI-LC/MS and GC-MS. SLs purified from root exudates of rice plants were orobanchol, orobanchyl acetate, and ent-2'-epi-5-deoxystrigol. In addition to these SLs, 7-oxoorobanchyl acetate and the putative three methoxy-5-deoxystrigol isomers were detected by LC-MS/MS. The production of 7-oxoorobanchyl acetate seemed to occur in the early growth stage, as it was detected only in the root exudates collected during the first week of incubation. The root exudates of tobacco contained at least 11 SLs, including solanacol, solanacyl acetate, orobanchol, ent-2'-epi-orobanchol, orobanchyl acetate, ent-2'-epi-orobanchyl acetate, 5-deoxystrigol, ent-2'-epi-5-deoxystrigol, and three isomers of putative didehydro-orobanchol whose structures remain to be clarified. Furthermore, two sorgolactone isomers but not sorgolactone were detected as minor SLs by LC-MS/MS analysis. It is intriguing to note that rice plants produced only orobanchol-type SLs, derived from ent-2'-epi-5-deoxystrigol, but both orobanchol-type and strigol-type SLs, derived from 5-deoxystrigol were detected in tobacco plants.


Assuntos
Lactonas/química , Nicotiana/metabolismo , Oryza/metabolismo , Cromatografia Líquida , Lactonas/metabolismo , Espectrometria de Massas , Exsudatos de Plantas/metabolismo , Raízes de Plantas/metabolismo , Reprodutibilidade dos Testes , Estereoisomerismo
16.
J Nat Prod ; 75(9): 1546-52, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22950366

RESUMO

Bioassay-guided investigation of the cyanobacterium Anabaena compacta extracts afforded spumigin J (1) and the known thrombin inhibitor spumigin A (2). The absolute configuration of 1 was analyzed by advanced Marfey's methodology. Compounds 1 and 2 inhibited thrombin with EC(50) values of 4.9 and 2.1 µM, and 0.7 and 0.2 µM in the cathepsin B inhibitory assay, respectively. The MM-GBSA methodology predicted spumigin A with 2S-4-methylproline as the better thrombin inhibitor.


Assuntos
Anabaena/química , Água Doce/microbiologia , Trombina/antagonistas & inibidores , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Prolina/análogos & derivados , Prolina/química
17.
Planta ; 235(6): 1197-207, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22183123

RESUMO

Plants exude strigolactones (SLs) to attract symbiotic arbuscular mycorrhizal fungi in the rhizosphere. Previous studies have demonstrated that phosphorus (P) deficiency, but not nitrogen (N) deficiency, significantly promotes SL exudation in red clover, while in sorghum not only P deficiency but also N deficiency enhances SL exudation. There are differences between plant species in SL exudation under P- and N-deficient conditions, which may possibly be related to differences between legumes and non-legumes. To investigate this possibility in detail, the effects of N and P deficiencies on SL exudation were examined in Fabaceae (alfalfa and Chinese milk vetch), Asteraceae (marigold and lettuce), Solanaceae (tomato), and Poaceae (wheat) plants. In alfalfa as expected, and unexpectedly in tomato, only P deficiency promoted SL exudation. In contrast, in Chinese milk vetch, a leguminous plant, and in the other non-leguminous plants examined, N deficiency as well as P deficiency enhanced SL exudation. Distinct reductions in shoot P levels were observed in plants grown under N deficiency, except for tomato, in which shoot P level was increased by N starvation, suggesting that the P status of the shoot regulates SL exudation. There seems to be a correlation between shoot P levels and SL exudation across the species/families investigated.


Assuntos
Lactonas/metabolismo , Magnoliopsida/metabolismo , Nitrogênio/deficiência , Fósforo/deficiência , Exsudatos de Plantas/metabolismo , Fabaceae/crescimento & desenvolvimento , Fabaceae/metabolismo , Lactonas/química , Magnoliopsida/crescimento & desenvolvimento , Nitrogênio/metabolismo , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo
18.
J Nat Prod ; 72(4): 777-81, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19260658

RESUMO

Micropeptins C (1), D (2), E (3), and F (4) have been isolated from the freshwater cyanobacterium Microcystis aeruginosa (NIES-100). The structures were elucidated by analyses of MS, NMR spectra, and chemical degradation. Micropeptins C, D, E, and F inhibited chymotrypsin with IC(50)'s of 1.1, 1.2, 1.0, and 1.5 microg/mL, respectively.


Assuntos
Quimotripsina/antagonistas & inibidores , Depsipeptídeos/isolamento & purificação , Microcystis/química , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Água Doce , Concentração Inibidora 50 , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
19.
Proc Natl Acad Sci U S A ; 101(15): 5433-8, 2004 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-15004282

RESUMO

Aeruginosin 298-A was isolated from the freshwater cyanobacterium Microcystis aeruginosa (NIES-298) and is an equipotent thrombin and trypsin inhibitor. A variety of analogs were synthesized to gain insight into the structure-activity relations. We developed a versatile synthetic process for aeruginosin 298-A as well as several attractive analogs, in which all stereocenters were controlled by catalytic asymmetric phase-transfer reaction promoted by two-center asymmetric catalysts and catalytic asymmetric epoxidation promoted by a lanthanide-BINOL complex. Furthermore, serine protease inhibitory activities of aeruginosin 298-A and its analogs were examined.


Assuntos
Leucina/análogos & derivados , Leucina/síntese química , Leucina/farmacologia , Inibidores da Tripsina/síntese química , Inibidores da Tripsina/farmacologia , Alquilação , Catálise , Compostos de Epóxi/química , Concentração Inibidora 50 , Leucina/química , Naftóis/química , Estereoisomerismo , Relação Estrutura-Atividade , Inibidores da Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA