Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(9): 096301, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721814

RESUMO

A bicircular light (BCL) consists of left and right circularly polarized lights with different frequencies, and draws a roselike pattern with a rotational symmetry determined by the ratio of the two frequencies. Here we show that an application of a BCL to centrosymmetric systems allows a photocurrent generation through introduction of an effective polarity to the system. We derive formulas for the BCL-induced photocurrent from a standard perturbation theory, which is then applied to a simple 1D model and 3D Dirac and Weyl semimetals. A nonperturbative effect with strong light intensity is also discussed with the Floquet technique.

2.
Nat Nanotechnol ; 18(1): 36-41, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36411374

RESUMO

Given its innate coupling with wavefunction geometry in solids and its potential to boost the solar energy conversion efficiency, the bulk photovoltaic effect (BPVE) has been of considerable interest in the past decade1-14. Initially discovered and developed in ferroelectric oxide materials2, the BPVE has now been explored in a wide range of emerging materials, such as Weyl semimetals9,10, van der Waals nanomaterials11,12,14, oxide superlattices15, halide perovskites16, organics17, bulk Rashba semiconductors18 and others. However, a feasible experimental approach to optimize the photovoltaic performance is lacking. Here we show that strain-induced polarization can significantly enhance the BPVE in non-centrosymmetric rhombohedral-type MoS2 multilayer flakes (that is, 3R-MoS2). This polarization-enhanced BPVE, termed the piezophotovoltaic effect, exhibits distinctive crystallographic orientation dependence, in that the enhancement mainly manifests in the armchair direction of the 3R-MoS2 lattice while remaining largely intact in the zigzag direction. Moreover, the photocurrent increases by over two orders of magnitude when an in-plane tensile strain of ~0.2% is applied, rivalling that of state-of-the-art materials. This work unravels the potential of strain engineering in boosting the photovoltaic performance, which could potentially promote the exploration of novel photoelectric processes in strained two-dimensional layered materials and their van der Waals heterostructures.

3.
Science ; 372(6537): 68-72, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33795452

RESUMO

Van der Waals interfaces can be formed by layer stacking without regard to lattice constants or symmetries of individual building blocks. We engineered the symmetry of a van der Waals interface of tungsten selenide and black phosphorus and realized in-plane electronic polarization that led to the emergence of a spontaneous photovoltaic effect. Spontaneous photocurrent was observed along the polar direction and was absent in the direction perpendicular to it. The observed spontaneous photocurrent was explained by a quantum-mechanical shift current that reflects the geometrical and topological electronic nature of this emergent interface. The present results offer a simple guideline for symmetry engineering that is applicable to a variety of van der Waals interfaces.

4.
Science ; 368(6489): 376, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32327590
5.
Science ; 358(6366): 1084-1087, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29170239

RESUMO

Mott insulators can host a surprisingly diverse set of quantum phenomena when their frozen electrons are perturbed by various stimuli. Superconductivity, metal-insulator transition, and colossal magnetoresistance induced by element substitution, pressure, and magnetic field are prominent examples. Here we report strong diamagnetism in the Mott insulator calcium ruthenate (Ca2RuO4) induced by dc electric current. The application of a current density of merely 1 ampere per centimeter squared induces diamagnetism stronger than that in other nonsuperconducting materials. This change is coincident with changes in the transport properties as the system becomes semimetallic. These findings suggest that dc current may be a means to control the properties of materials in the vicinity of a Mott insulating transition.

6.
Phys Rev Lett ; 115(4): 045304, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26252693

RESUMO

We design an interaction-driven topological insulator for fermionic cold atoms in an optical lattice; that is, we pose the question of whether we can realize in a continuous space a spontaneous symmetry breaking induced by the interatom interaction into a topological Chern insulator. Such a state, sometimes called a "topological Mott insulator," has yet to be realized in solid-state systems, since this requires, in the tight-binding model, large off-site interactions on top of a small on-site interaction. Here, we overcome the difficulty by introducing a spin-dependent potential, where a spin-selective occupation of fermions in A and B sublattices makes the on-site interaction Pauli forbidden, while a sizeable intersite interaction is achieved by a shallow optical potential with a large overlap between neighboring Wannier orbitals. This puts the system away from the tight-binding model, so that we adopt density functional theory for cold atoms, here extended to accommodate noncollinear spin structures emerging in the topological regime, to quantitatively demonstrate the phase transition to the topological Mott insulator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...