Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
2.
Commun Biol ; 6(1): 1294, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129572

RESUMO

Immunotherapy has attracted considerable attention as a therapeutic strategy for cancers including acute myeloid leukemia (AML). In this study, we found that the development of several aggressive subtypes of AML is slower in Rag2-/- mice despite the lack of B and T lymphocytes, even compared to the immunologically normal C57BL/6 mice. Furthermore, an orally active p53-activating drug shows stronger antileukemia effect on AML in Rag2-/- mice than C57BL/6 mice. Intriguingly, Natural Killer (NK) cells in Rag2-/- mice are increased in number, highly express activation markers, and show increased cytotoxicity to leukemia cells in a coculture assay. B2m depletion that triggers missing-self recognition of NK cells impairs the growth of AML cells in vivo. In contrast, NK cell depletion accelerates AML progression in Rag2-/- mice. Interestingly, immunogenicity of AML keeps changing during tumor evolution, showing a trend that the aggressive AMLs generate through serial transplantations are susceptible to NK cell-mediated tumor suppression in Rag2-/- mice. Thus, we show the critical role of NK cells in suppressing the development of certain subtypes of AML using Rag2-/- mice, which lack functional lymphocytes but have hyperactive NK cells.


Assuntos
Células Matadoras Naturais , Leucemia Mieloide Aguda , Animais , Camundongos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Linfócitos T , Proteínas de Ligação a DNA/genética
3.
Nat Commun ; 14(1): 8372, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102116

RESUMO

ATP-dependent chromatin remodeling SWI/SNF complexes exist in three subcomplexes: canonical BAF (cBAF), polybromo BAF (PBAF), and a newly described non-canonical BAF (ncBAF). While cBAF and PBAF regulate fates of multiple cell types, roles for ncBAF in hematopoietic stem cells (HSCs) have not been investigated. Motivated by recent discovery of disrupted expression of BRD9, an essential component of ncBAF, in multiple cancers, including clonal hematopoietic disorders, we evaluate here the role of BRD9 in normal and malignant HSCs. BRD9 loss enhances chromatin accessibility, promoting myeloid lineage skewing while impairing B cell development. BRD9 significantly colocalizes with CTCF, whose chromatin recruitment is augmented by BRD9 loss, leading to altered chromatin state and expression of myeloid-related genes within intact topologically associating domains. These data uncover ncBAF as critical for cell fate specification in HSCs via three-dimensional regulation of gene expression and illuminate roles for ncBAF in normal and malignant hematopoiesis.


Assuntos
Cromatina , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Montagem e Desmontagem da Cromatina , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo
4.
Rinsho Ketsueki ; 64(9): 1007-1018, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37793857

RESUMO

Chronic myeloid leukemia (CML) stem cells have been identified to promote CML relapse due to their quiescent cell cycle and tyrosine kinase inhibitor resistance. Therefore, their eradication is important for the cure of CML. We herein identified the quiescent CML stem cell fraction using a G0 marker that can visualize quiescent cells. Whole-transcriptome analysis of imatinib-resistant, quiescent CML stem cells revealed that NF-κB is activated via inflammatory signals in the same cells. The combination of imatinib and an inhibitor of this inflammatory signal (IRAK1/4 inhibitor) effectively eliminated CML stem cells and attenuated PD-L1 expression in CML stem cells. Furthermore, the combination of anti-PD-L1 antibody and imatinib effectively eliminated CML stem cells in the presence of T-cell immunity, indicating the importance of creating an environment in which T cells can attack CML stem cells. Thus, IRAK1/4 inhibitors exert two effects: blocking CML stem cell survival and proliferation signals by inhibiting NF-κB and blocking T cell immune evasion by reducing PD-L1 expression in CML stem cells. Collectively, their combination may be one of the attractive strategies for achieving a radical cure for CML. Discussions regarding the possibility of future medications seem warranted.


Assuntos
Antígeno B7-H1 , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , NF-kappa B , Proteínas de Fusão bcr-abl , Apoptose , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Células-Tronco/metabolismo , Células-Tronco Neoplásicas , Resistencia a Medicamentos Antineoplásicos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/farmacologia , Quinases Associadas a Receptores de Interleucina-1/uso terapêutico
5.
Cell Rep ; 42(9): 113098, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37714156

RESUMO

Decitabine (DAC) is clinically used to treat myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Our genome-wide CRISPR-dCas9 activation screen using MDS-derived AML cells indicates that mitotic regulation is critical for DAC resistance. DAC strongly induces abnormal mitosis (abscission failure or tripolar mitosis) in human myeloid tumors at clinical concentrations, especially in those with TP53 mutations or antecedent hematological disorders. This DAC-induced mitotic disruption and apoptosis are significantly attenuated in DNMT1-depleted cells. In contrast, overexpression of Dnmt1, but not the catalytically inactive mutant, enhances DAC-induced mitotic defects in myeloid tumors. We also demonstrate that DAC-induced mitotic disruption is enhanced by pharmacological inhibition of the ATR-CLSPN-CHK1 pathway. These data challenge the current assumption that DAC inhibits leukemogenesis through DNMT1 inhibition and subsequent DNA hypomethylation and highlight the potent activity of DAC to disrupt mitosis through aberrant DNMT1-DNA covalent bonds.


Assuntos
Azacitidina , Leucemia Mieloide Aguda , Humanos , Decitabina/farmacologia , Decitabina/uso terapêutico , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Antimetabólitos Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/patologia , Metilação de DNA/genética , DNA , Proteínas Adaptadoras de Transdução de Sinal/genética
6.
Cancer Sci ; 114(10): 4032-4040, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37522388

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is one of the most frequently occurring cancers in children and is associated with a poor prognosis. Here, we performed large-scale screening of natural compound libraries to identify potential drugs against T-ALL. We identified three low-molecular-weight compounds (auxarconjugatin-B, rumbrin, and lavendamycin) that inhibited the proliferation of the T-ALL cell line CCRF-CEM, but not that of the B lymphoma cell line Raji in a low concentration range. Among them, auxarconjugatin-B and rumbrin commonly contained a polyenyl 3-chloropyrrol in their chemical structure, therefore we chose auxarconjugatin-B for further analyses. Auxarconjugatin-B suppressed the in vitro growth of five human T-ALL cell lines and two T-ALL patient-derived cells, but not that of adult T-cell leukemia patient-derived cells. Cultured normal T cells were several-fold resistant to auxarconjugatin-B. Auxarconjugatin-B and its synthetic analogue Ra#37 depolarized the mitochondrial membrane potential of CCRF-CEM cells within 3 h of treatment. These compounds are promising seeds for developing novel anti-T-ALL drugs.

7.
FEBS J ; 290(21): 5141-5157, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37500075

RESUMO

Transcription factor RUNX1 plays important roles in hematopoiesis and leukemogenesis. RUNX1 function is tightly controlled through posttranslational modifications, including ubiquitination and acetylation. However, its regulation via ubiquitination, especially proteasome-independent ubiquitination, is poorly understood. We previously identified DTX2 as a RUNX1-interacting E3 ligase using a cell-free AlphaScreen assay. In this study, we examined whether DTX2 is involved in the regulation of RUNX1 using in vitro and ex vivo analyses. DTX2 bound to RUNX1 and other RUNX family members RUNX2 and RUNX3 through their C-terminal region. DTX2-induced RUNX1 ubiquitination did not result in RUNX1 protein degradation. Instead, we found that the acetylation of RUNX1, which is known to enhance the transcriptional activity of RUNX1, was inhibited in the presence of DTX2. Concomitantly, DTX2 reduced the RUNX1-induced activation of an MCSFR luciferase reporter. We also found that DTX2 induced RUNX1 cytoplasmic mislocalization. Moreover, DTX2 overexpression showed a substantial growth-inhibitory effect in RUNX1-dependent leukemia cell lines. Thus, our findings indicate a novel aspect of the ubiquitination and acetylation of RUNX1 that is modulated by DTX2 in a proteosome-independent manner.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação da Expressão Gênica , Leucemia/genética
8.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37462944

RESUMO

Loss-of-function mutations in the lysosomal nucleoside transporter SLC29A3 cause lysosomal nucleoside storage and histiocytosis: phagocyte accumulation in multiple organs. However, little is known about the mechanism by which lysosomal nucleoside storage drives histiocytosis. Herein, histiocytosis in Slc29a3-/- mice was shown to depend on Toll-like receptor 7 (TLR7), which senses a combination of nucleosides and oligoribonucleotides (ORNs). TLR7 increased phagocyte numbers by driving the proliferation of Ly6Chi immature monocytes and their maturation into Ly6Clow phagocytes in Slc29a3-/- mice. Downstream of TLR7, FcRγ and DAP10 were required for monocyte proliferation. Histiocytosis is accompanied by inflammation in SLC29A3 disorders. However, TLR7 in nucleoside-laden splenic monocytes failed to activate inflammatory responses. Enhanced production of proinflammatory cytokines was observed only after stimulation with ssRNAs, which would increase lysosomal ORNs. Patient-derived monocytes harboring the G208R SLC29A3 mutation showed enhanced survival and proliferation in a TLR8-antagonist-sensitive manner. These results demonstrated that TLR7/8 responses to lysosomal nucleoside stress drive SLC29A3 disorders.


Assuntos
Histiocitose , Receptor 7 Toll-Like , Animais , Camundongos , Citocinas/genética , Histiocitose/genética , Mutação/genética , Nucleosídeos , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/genética
9.
Leukemia ; 37(9): 1802-1811, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37464069

RESUMO

SETBP1 is a potential epigenetic regulator whose hotspot mutations preventing proteasomal degradation are recurrently detected in myeloid malignancies with poor prognosis. It is believed that the mutant SETBP1 exerts amplified effects of wild-type SETBP1 rather than neomorphic functions. This indicates that dysregulated quantitative control of SETBP1 would result in the transformation of hematopoietic cells. However, little is known about the roles of endogenous SETBP1 in malignant and normal hematopoiesis. Thus, we integrated the analyses of primary AML and healthy samples, cancer cell lines, and a newly generated murine model, Vav1-iCre;Setbp1fl/fl. Despite the expression in long-term hematopoietic stem cells, SETBP1 depletion in normal hematopoiesis minimally alters self-renewal, differentiation, or reconstitution in vivo. Indeed, its loss does not profoundly alter transcription or chromatin accessibilities. Furthermore, although AML with high SETBP1 mRNA is associated with genetic and clinical characteristics for dismal outcomes, SETBP1 is dispensable for the development or maintenance of AML. Contrary to the evidence that SETBP1 mutations are restricted to myeloid malignancies, dependency on SETBP1 mRNA expression is not observed in AML. These unexpected results shed light on the unrecognized idea that a physiologically nonessential gene can act as an oncogene when the machinery of protein degradation is damaged.


Assuntos
Hematopoese , Leucemia Mieloide Aguda , Animais , Humanos , Camundongos , Proteínas de Transporte/genética , Diferenciação Celular , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/patologia , Mutação , Proteínas Nucleares/genética
10.
EMBO Mol Med ; 15(1): e15631, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36453131

RESUMO

Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in de novo guanine nucleotide synthesis pathway. Although IMPDH inhibitors are widely used as effective immunosuppressants, their antitumor effects have not been proven in the clinical setting. Here, we found that acute myeloid leukemias (AMLs) with MLL-fusions are susceptible to IMPDH inhibitors in vitro. We also showed that alternate-day administration of IMPDH inhibitors suppressed the development of MLL-AF9-driven AML in vivo without having a devastating effect on immune function. Mechanistically, IMPDH inhibition induced overactivation of Toll-like receptor (TLR)-TRAF6-NF-κB signaling and upregulation of an adhesion molecule VCAM1, which contribute to the antileukemia effect of IMPDH inhibitors. Consequently, combined treatment with IMPDH inhibitors and the TLR1/2 agonist effectively inhibited the development of MLL-fusion AML. These findings provide a rational basis for clinical testing of IMPDH inhibitors against MLL-fusion AMLs and potentially other aggressive tumors with active TLR signaling.


Assuntos
Leucemia Mieloide Aguda , Proteína de Leucina Linfoide-Mieloide , Humanos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Inibidores Enzimáticos/farmacologia , NF-kappa B , Imunossupressores/uso terapêutico
11.
Cell Mol Life Sci ; 79(9): 473, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941268

RESUMO

Hematopoietic stem cells (HSCs) undergo progressive functional decline over time due to both internal and external stressors, leading to aging of the hematopoietic system. A comprehensive understanding of the molecular mechanisms underlying HSC aging will be valuable in developing novel therapies for HSC rejuvenation and to prevent the onset of several age-associated diseases and hematological malignancies. This review considers the general causes of HSC aging that range from cell-intrinsic factors to cell-extrinsic factors. In particular, epigenetics and inflammation have been implicated in the linkage of HSC aging, clonality, and oncogenesis. The challenges in clarifying mechanisms of HSC aging have accelerated the development of therapeutic interventions to rejuvenate HSCs, the major goal of aging research; these details are also discussed in this review.


Assuntos
Senescência Celular , Células-Tronco Hematopoéticas , Epigênese Genética , Hematopoese , Células-Tronco Hematopoéticas/fisiologia
12.
Exp Hematol ; 112-113: 1-8, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35644277

RESUMO

Transcription factor RUNX1 plays key roles in the establishment and maintenance of the hematopoietic system. Although RUNX1 has been considered a beneficial tumor suppressor, several recent reports have described the tumor-promoting role of RUNX1 in a variety of hematopoietic neoplasms. In this study, we assessed the effect of RUNX1 depletion in multiple human leukemia cell lines using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system, and confirmed that RUNX1 is in fact required for sustaining their leukemic proliferation. To achieve efficient RUNX1 inhibition in leukemia cells, we then examined the effect of lipid nanoparticle (LNP)-mediated delivery of RUNX1-targeting small interfering (si)RNA using two tumor-tropic LNPs. The LNPs containing RUNX1-targeting siRNA were efficiently incorporated into myeloid and T-cell leukemia cell lines and patient-derived primary human acute myeloid leukemia (AML) cells, downregulated RUNX1 expression, induced cell cycle arrest and apoptosis, and exhibited the growth-inhibitory effect in them. In contrast, the LNPs were not efficiently incorporated into normal cord blood CD34+ cells, indicating their minimum cytotoxicity. Thus, our study highlights RUNX1 as a potential therapeutic target to inhibit leukemogenesis, and provides the LNP-based siRNA delivery as a promising approach to deplete RUNX1 specifically in leukemia cells.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Linhagem Celular Tumoral , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Lipossomos , Nanopartículas , RNA Interferente Pequeno/genética
13.
Sci Rep ; 12(1): 10805, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752644

RESUMO

This study aimed to evaluate the sequential changes in the proportion of anemia among young women over eight years after the Great East Japan Earthquake in 2011 using a prospective study of the Fukushima Health Management Survey. This study focused on the women aged between 20 and 44 who lived in the evacuation area of the nuclear power plant accident. The yearly age-adjusted proportion of anemia was accessed with data between July 2011 and March 2019. A total of 9,198 women participated in the health checkup in 2011, albeit the participation was decreased to 1,241 in 2018. The age-adjusted proportion of anemia was 16.7% in 2012 and then declined after 2013 (p with Cochran-Armitage trend test = 0.03). The multivariate regression analysis identified < 23 kg/m2 of body mass index (BMI), no history of smoking, and no habitual alcohol use as independent baseline characteristics predictive of temporality anemic condition after the disaster (Adjusted odds ratios [95% confidence interval]; 1.98 [1.43-2.74], 1.85 [1.21-2.83], and 1.42 [1.07-1.90], respectively). Thus, women with low BMI and healthier habits might risk temporarily anemic status after the disaster. Our findings signal the importance of preventing anemia in young women after the disaster.


Assuntos
Anemia , Terremotos , Acidente Nuclear de Fukushima , Adulto , Anemia/epidemiologia , Feminino , Inquéritos Epidemiológicos , Humanos , Japão/epidemiologia , Estudos Prospectivos , Adulto Jovem
14.
Cell Rep ; 39(6): 110805, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545056

RESUMO

Myelodysplastic syndrome (MDS) is a clonal disorder of hematopoietic stem cells (HSCs), characterized by ineffective hematopoiesis and frequent progression to leukemia. It has long remained unresolved how MDS cells, which are less proliferative, inhibit normal hematopoiesis and eventually dominate the bone marrow space. Despite several studies implicating mesenchymal stromal or stem cells (MSCs), a principal component of the HSC niche, in the inhibition of normal hematopoiesis, the molecular mechanisms underlying this process remain unclear. Here, we demonstrate that both human and mouse MDS cells perturb bone metabolism by suppressing the osteolineage differentiation of MSCs, which impairs the ability of MSCs to support normal HSCs. Enforced MSC differentiation rescues the suppressed normal hematopoiesis in both in vivo and in vitro MDS models. Intriguingly, the suppression effect is reversible and mediated by extracellular vesicles (EVs) derived from MDS cells. These findings shed light on the novel MDS EV-MSC axis in ineffective hematopoiesis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Síndromes Mielodisplásicas , Animais , Vesículas Extracelulares/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Síndromes Mielodisplásicas/metabolismo
15.
PeerJ ; 10: e13004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237470

RESUMO

BACKGROUND: Anemia is a common health issue among adolescents. Anemic conditions could affect physical performance; however, the actual profiles of anemia in adolescent students in sports clubs have not been well documented. METHODS: We conducted a retrospective chart review of individuals aged 13-22 years who belonged to sports clubs in schools and visited an outpatient clinic between August 1, 2016, and August 31, 2020. The medical and laboratory records, including serum levels of ferritin, folate, vitamin B12, and creatinine kinase at their first visit were assessed. RESULTS: A total of 485 individuals (231 male (48%) and 254 female (52%) patients) were eligible for the study. The most common club activity was track and field (n = 171 (35%)). The overall prevalence of the World Health Organization-defined anemia was 16.5% (95% CI [13.1-20.4]; 9.0% [5.4-13.8] and 23.1% [17.8-29.2] in males and females, respectively) after excluding pre-treated individuals. Hypoferritinemia and elevation of serum creatinine kinase levels were identified as independent contributors to anemia in both sexes (odds ratios: 13.2 (95% CI [4.2-41.1]), p < 0.001 and 14.7 (95% CI [1.8-118.4]), p = 0.012, respectively for males; odds ratios: 6.6 (95% CI [1.3-13.9]), p < 0.001 and 2.7 (95% CI [1.4-5.5]), p = 0.004, respectively for females). DISCUSSION: Anemia is prevalent in both male and female adolescent students in sports clubs. Iron deficiency and excessive training indicated by elevated creatinine kinase levels may contribute to the risk of anemia. Physicians should assess the amount of exercise, and not merely iron storage, in clinical practice.


Assuntos
Anemia , Deficiências de Ferro , Humanos , Masculino , Adolescente , Feminino , Estudos Retrospectivos , Creatinina , Anemia/epidemiologia , Ácido Fólico , Estudantes
16.
Int J Hematol ; 115(5): 686-693, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35152350

RESUMO

The chimeric oncogene AML1-MTG8 (RUNX1-RUNX1T1) is generated in t(8;21) acute myeloid leukemia (AML). Here, we report a novel interaction of MTG8/RUNX1T1/ETO with UBC9/UBE2I. AML1-MTG8 protein also interacted with UBC9, suggesting a role in leukemogenesis. Overexpression of UBC9 in Kasumi-1 attenuated myeloid differentiation induced by all-trans retinoic acid, G-CSF, and GM-CSF (AGGM), which was judged by suppression of CD11b. In addition, the UBC9 inhibitor 2-D08 accelerated myeloid differentiation induced by AGGM in two t(8;21) AML cell lines, Kasumi-1 and SKNO-1. These data suggest that UBC9 may play a role in leukemogenesis in t(8;21) AML by working with AML1-MTG8 to suppress myeloid differentiation. Therefore, UBC9 may be a good target for new differentiation therapy against t(8;21) AML.


Assuntos
Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica , Diferenciação Celular , Linhagem Celular , Cromossomos Humanos Par 21/genética , Cromossomos Humanos Par 8/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/genética , Translocação Genética
17.
Cancer Sci ; 113(4): 1182-1194, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35133065

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) is an age-associated phenomenon characterized by clonal expansion of blood cells harboring somatic mutations in hematopoietic genes, including DNMT3A, TET2, and ASXL1. Clinical evidence suggests that CHIP is highly prevalent and associated with poor prognosis in solid-tumor patients. However, whether blood cells with CHIP mutations play a causal role in promoting the development of solid tumors remained unclear. Using conditional knock-in mice that express CHIP-associated mutant Asxl1 (Asxl1-MT), we showed that expression of Asxl1-MT in T cells, but not in myeloid cells, promoted solid-tumor progression in syngeneic transplantation models. We also demonstrated that Asxl1-MT-expressing blood cells accelerated the development of spontaneous mammary tumors induced by MMTV-PyMT. Intratumor analysis of the mammary tumors revealed the reduced T-cell infiltration at tumor sites and programmed death receptor-1 (PD-1) upregulation in CD8+ T cells in MMTV-PyMT/Asxl1-MT mice. In addition, we found that Asxl1-MT induced T-cell dysregulation, including aberrant intrathymic T-cell development, decreased CD4/CD8 ratio, and naïve-memory imbalance in peripheral T cells. These results indicate that Asxl1-MT perturbs T-cell development and function, which contributes to creating a protumor microenvironment for solid tumors. Thus, our findings raise the possibility that ASXL1-mutated blood cells exacerbate solid-tumor progression in ASXL1-CHIP carriers.


Assuntos
Hematopoiese Clonal , Neoplasias , Proteínas Repressoras , Animais , Linfócitos T CD8-Positivos/metabolismo , Hematopoiese Clonal/genética , Hematopoese/genética , Camundongos , Mutação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Microambiente Tumoral
18.
Nat Commun ; 13(1): 271, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022428

RESUMO

Leukemia stem cells (LSCs) in chronic myeloid leukemia (CML) are quiescent, insensitive to BCR-ABL1 tyrosine kinase inhibitors (TKIs) and responsible for CML relapse. Therefore, eradicating quiescent CML LSCs is a major goal in CML therapy. Here, using a G0 marker (G0M), we narrow down CML LSCs as G0M- and CD27- double positive cells among the conventional CML LSCs. Whole transcriptome analysis reveals NF-κB activation via inflammatory signals in imatinib-insensitive quiescent CML LSCs. Blocking NF-κB signals by inhibitors of interleukin-1 receptor-associated kinase 1/4 (IRAK1/4 inhibitors) together with imatinib eliminates mouse and human CML LSCs. Intriguingly, IRAK1/4 inhibitors attenuate PD-L1 expression on CML LSCs, and blocking PD-L1 together with imatinib also effectively eliminates CML LSCs in the presence of T cell immunity. Thus, IRAK1/4 inhibitors can eliminate CML LSCs through inhibiting NF-κB activity and reducing PD-L1 expression. Collectively, the combination of TKIs and IRAK1/4 inhibitors is an attractive strategy to achieve a radical cure of CML.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mieloide/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Animais , Antineoplásicos/farmacologia , Doença Crônica , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacologia
19.
J Virol Methods ; 301: 114431, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34921840

RESUMO

Tomato yellow leaf curl virus (TYLCV) and tomato chlorosis virus (ToCV) were transmitted by the sweet potato whitefly Bemisia tabaci (Gennadius) and cause serious yield losses on tomato around the world. To understand the actual situation of co-infection of TYLCV and ToCV of individual whiteflies, we developed multiplex RT-PCR combined with co-extraction of DNA and RNA from a single whitefly. First, a nucleic acid extraction method previously reported was modified and adopted to obtain the RNA-DNA mixture including TYLCV and ToCV in a simple form without manual homogenization. Second, primers were newly designed in actin gene of B. tabaci for the confirmation of extraction and PCR success, and multiplex RT-PCR method was developed using specific primer sets for TYLCV, ToCV and B. tabaci. This method enables the detection of TYLCV and ToCV from a single insect and efficient use of field samples obtained using sticky traps. The method will be useful to monitor infection status of TYLCV and ToCV in the field while reducing labor and cost.


Assuntos
Hemípteros , Animais , Begomovirus , Crinivirus , DNA , Reação em Cadeia da Polimerase Multiplex , RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Sci Rep ; 11(1): 23889, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903756

RESUMO

Cell behavior is controlled by complex gene regulatory networks. Although studies have uncovered diverse roles of individual genes, it has been challenging to record or control sequential genetic events in living cells. In this study, we designed two cellular chain reaction systems that enable sequential sgRNA activation in mammalian cells using a nickase Cas9 tethering of a cytosine nucleotide deaminase (nCas9-CDA). In these systems, thymidine (T)-to-cytosine (C) substitutions in the scaffold region of the sgRNA or the TATA box-containing loxP sequence (TATAloxP) are corrected by the nCas9-CDA, leading to activation of the next sgRNA. These reactions can occur multiple times, resulting in cellular chain reactions. As a proof of concept, we established a chain reaction by repairing sgRNA scaffold mutations in 293 T cells. Importantly, the results obtained in yeast or in vitro did not match those obtained in mammalian cells, suggesting that in vivo chain reactions need to be optimized in appropriate cellular contexts. Our system may lay the foundation for building cellular chain reaction systems that have a broad utility in the future biomedical research.


Assuntos
Sistemas CRISPR-Cas , Reparo do DNA , Edição de Genes , Mutação , RNA Guia de Cinetoplastídeos/genética , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Células HEK293 , Humanos , TATA Box/genética , Timidina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...