Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Res ; 38(10): 1521-1540, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37551879

RESUMO

Mouse ligature-induced periodontitis (LIP) has been used to study bone loss in periodontitis. However, the role of osteocytes in LIP remains unclear. Furthermore, there is no consensus on the choice of alveolar bone parameters and time points to evaluate LIP. Here, we investigated the dynamics of changes in osteoclastogenesis and bone volume (BV) loss in LIP over 14 days. Time-course analysis revealed that osteoclast induction peaked on days 3 and 5, followed by the peak of BV loss on day 7. Notably, BV was restored by day 14. The bone formation phase after the bone resorption phase was suggested to be responsible for the recovery of bone loss. Electron microscopy identified bacteria in the osteocyte lacunar space beyond the periodontal ligament (PDL) tissue. We investigated how osteocytes affect bone resorption of LIP and found that mice lacking receptor activator of NF-κB ligand (RANKL), predominantly in osteocytes, protected against bone loss in LIP, whereas recombination activating 1 (RAG1)-deficient mice failed to resist it. These results indicate that T/B cells are dispensable for osteoclast induction in LIP and that RANKL from osteocytes and mature osteoblasts regulates bone resorption by LIP. Remarkably, mice lacking the myeloid differentiation primary response gene 88 (MYD88) did not show protection against LIP-induced bone loss. Instead, osteocytic cells expressed nucleotide-binding oligomerization domain containing 1 (NOD1), and primary osteocytes induced significantly higher Rankl than primary osteoblasts when stimulated with a NOD1 agonist. Taken together, LIP induced both bone resorption and bone formation in a stage-dependent manner, suggesting that the selection of time points is critical for quantifying bone loss in mouse LIP. Pathogenetically, the current study suggests that bacterial activation of osteocytes via NOD1 is involved in the mechanism of osteoclastogenesis in LIP. The NOD1-RANKL axis in osteocytes may be a therapeutic target for bone resorption in periodontitis. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).

2.
Calcif Tissue Int ; 113(1): 48-67, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148298

RESUMO

As the most numerous and long-lived of all bone cells, osteocytes have essential functions in regulating skeletal health. Through the lacunar-canalicular system, secreted proteins from osteocytes can reach cells throughout the bone. Furthermore, the intimate connectivity between the lacunar-canalicular system and the bone vasculature allows for the transport of osteocyte-secreted factors into the circulation to reach the entire body. Local and endocrine osteocyte signaling regulates physiological processes such as bone remodeling, bone mechanoadaptation, and mineral homeostasis. However, these processes are disrupted by impaired osteocyte function induced by aging and disease. Dysfunctional osteocyte signaling is now associated with the pathogenesis of many disorders, including chronic kidney disease, cancer, diabetes mellitus, and periodontitis. In this review, we focus on the targeting of bone and extraskeletal tissues by the osteocyte secretome. In particular, we highlight the secreted osteocyte proteins, which are known to be dysregulated during aging and disease, and their roles during disease progression. We also discuss how therapeutic or genetic targeting of osteocyte-secreted proteins can improve both skeletal and systemic health.


Assuntos
Osteócitos , Secretoma , Osteócitos/metabolismo , Osso e Ossos/metabolismo , Remodelação Óssea/fisiologia
3.
Aging (Albany NY) ; 15(2): 308-352, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36403149

RESUMO

Frailty is the hallmark of aging that can be delayed with exercise. The present studies were initiated based on the hypothesis that long-term voluntary wheel running (VWR) in female mice from 12 to 18 or 22 months of age would have beneficial effects on the musculoskeletal system. Mice were separated into high (HBW) and low (LBW) body weight based on final body weights upon termination of experiments. Bone marrow fat was significantly higher in HBW than LBW under sedentary conditions, but not with VWR. HBW was more protective for soleus size and function than LBW under sedentary conditions, however VWR increased soleus size and function regardless of body weight. VWR plus HBW was more protective against muscle loss with aging. Similar effects of VWR plus HBW were observed with the extensor digitorum longus, EDL, however, LBW with VWR was beneficial in improving EDL fatigue resistance in 18 mo mice and was more beneficial with regards to muscle production of bone protective factors. VWR plus HBW maintained bone in aged animals. In summary, HBW had a more beneficial effect on muscle and bone with aging especially in combination with exercise. These effects were independent of bone marrow fat, suggesting that intrinsic musculoskeletal adaptions were responsible for these beneficial effects.


Assuntos
Atividade Motora , Condicionamento Físico Animal , Camundongos , Feminino , Animais , Atividade Motora/fisiologia , Peso Corporal , Músculo Esquelético , Envelhecimento/fisiologia
4.
Bone Rep ; 11: 100218, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31440530

RESUMO

Signal transducer and activator of transcription 3 (Stat3) is a member of the Stat family of proteins involved in signaling in many different cell types, including osteocytes. Osteocytes are considered major mechanosensing cells in bone due to their intricate dendritic networks able to sense changes in physical force and to orchestrate the response of osteoclasts and osteoblasts. We examined the role of Stat3 in osteocytes by generating mice lacking Stat3 in these cells using the Dmp-1(8kb)-Cre promoter (Stat3cKO mice). Compared to age-matched littermate controls, Stat3cKO mice of either sex (18 weeks old) exhibit reduced bone formation indices, decreased osteoblasts and increased osteoclasts, and altered material properties, without detectable changes in bone mineral density (BMD) or content of either trabecular or cortical bone. In addition, Stat3cKO mice of either sex show significantly decreased load-induced bone formation. Furthermore, pharmacologic inhibition of Stat3 in osteocytes in vitro with WP1066 blocked the increase in cytosolic calcium induced by ATP, a mediator of the cellular responses to sheer stress. WP1066 also increased reactive oxygen species (ROS) production in cultured MLO-Y4 osteocytes. These data demonstrate that Stat3 is a critical mediator of mechanical signals received by osteocytes and suggest that osteocytic Stat3 is a potential therapeutic target to stimulate bone anabolism.

6.
Bone Res ; 7: 6, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820362

RESUMO

Transgenic mice are widely used to delete or overexpress genes in a cell specific manner to advance knowledge of bone biology, function and disease. While numerous Cre models exist to target gene recombination in osteoblasts and osteoclasts, few target osteocytes specifically, particularly mature osteocytes. Our goal was to create a spatial and temporal conditional Cre model using tamoxifen to induce Cre activity in mature osteocytes using a Bac construct containing the 5' and 3' regions of the Sost gene (Sost ERT2 Cre). Four founder lines were crossed with the Ai9 Cre reporter mice. One founder line showed high and specific activity in mature osteocytes. Bones and organs were imaged and fluorescent signal quantitated. While no activity was observed in 2 day old pups, by 2 months of age some osteocytes were positive as osteocyte Cre activity became spontaneous or 'leaky' with age. The percentage of positive osteocytes increased following tamoxifen injection, especially in males, with 43% to 95% positive cells compared to 19% to 32% in females. No signal was observed in any bone surface cell, bone marrow, nor in muscle with or without tamoxifen injection. No spontaneous signal was observed in any other organ. However, with tamoxifen injection, a few positive cells were observed in kidney, eye, lung, heart and brain. All other organs, 28 in total, were negative with tamoxifen injection. However, with age, a muscle phenotype was apparent in the Sost-ERT2 Cre mice. Therefore, although this mouse model may be useful for targeting gene deletion or expression to mature osteocytes, the muscle phenotype may restrict the use of this model to specific applications and should be considered when interpreting data.

7.
Cell ; 175(7): 1756-1768.e17, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30550785

RESUMO

Irisin is secreted by muscle, increases with exercise, and mediates certain favorable effects of physical activity. In particular, irisin has been shown to have beneficial effects in adipose tissues, brain, and bone. However, the skeletal response to exercise is less clear, and the receptor for irisin has not been identified. Here we show that irisin binds to proteins of the αV class of integrins, and biophysical studies identify interacting surfaces between irisin and αV/ß5 integrin. Chemical inhibition of the αV integrins blocks signaling and function by irisin in osteocytes and fat cells. Irisin increases both osteocytic survival and production of sclerostin, a local modulator of bone remodeling. Genetic ablation of FNDC5 (or irisin) completely blocks osteocytic osteolysis induced by ovariectomy, preventing bone loss and supporting an important role of irisin in skeletal remodeling. Identification of the irisin receptor should greatly facilitate our understanding of irisin's function in exercise and human health.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Remodelação Óssea , Fibronectinas/metabolismo , Integrina alfaV/metabolismo , Osteócitos/metabolismo , Osteólise/metabolismo , Adipócitos/patologia , Animais , Linhagem Celular Tumoral , Feminino , Fibronectinas/genética , Células HEK293 , Humanos , Integrina alfaV/genética , Camundongos , Osteócitos/patologia , Osteólise/genética
8.
J Cachexia Sarcopenia Muscle ; 9(4): 685-700, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30009406

RESUMO

BACKGROUND: Cachexia frequently occurs in women with advanced ovarian cancer (OC), along with enhanced inflammation. Despite being responsible for one third of all cancer deaths, cachexia is generally under-studied in OC due to a limited number of pre-clinical animal models. We aimed to address this gap by characterizing the cachectic phenotype in a mouse model of OC. METHODS: Nod SCID gamma mice (n = 6-10) were injected intraperitoneally with 1 × 107 ES-2 human OC cells to mimic disseminated abdominal disease. Muscle size and strength, as well as bone morphometry, were assessed. Tumour-derived effects on muscle fibres were investigated in C2C12 myotube cultures. IL-6 levels were detected in serum and ascites from tumour hosts, as well as in tumour sections. RESULTS: In about 2 weeks, ES-2 cells developed abdominal tumours infiltrating omentum, mesentery, and adjacent organs. The ES-2 tumours caused severe cachexia with marked loss of body weight (-12%, P < 0.01) and ascites accumulation in the peritoneal cavity (4.7 ± 1.5 mL). Skeletal muscles appeared markedly smaller in the tumour-bearing mice (approximately -35%, P < 0.001). Muscle loss was accompanied by fibre atrophy, consistent with reduced muscle cross-sectional area (-34%, P < 0.01) and muscle weakness (-50%, P < 0.001). Body composition assessment by dual-energy X-ray absorptiometry revealed decreased bone mineral density (-8%, P < 0.01) and bone mineral content (-19%, P < 0.01), also consistent with reduced trabecular bone in both femurs and vertebrae, as suggested by micro-CT imaging of bone morphometry. In the ES-2 mouse model, cachexia was also associated with high tumour-derived IL-6 levels in plasma and ascites (26.3 and 279.6 pg/mL, respectively) and with elevated phospho-STAT3 (+274%, P < 0.001), reduced phospho-AKT (-44%, P < 0.001) and decreased mitochondrial proteins, as well as with increased protein ubiquitination (+42%, P < 0.001) and expression of ubiquitin ligases in the skeletal muscle of tumour hosts. Similarly, ES-2 conditioned medium directly induced fibre atrophy in C2C12 mouse myotubes (-16%, P < 0.001), consistent with elevated phospho-STAT3 (+1.4-fold, P < 0.001) and altered mitochondrial homoeostasis and metabolism, while inhibition of the IL-6/STAT3 signalling by means of INCB018424 was sufficient to restore the myotubes size. CONCLUSIONS: Our results suggest that the development of ES-2 OC promotes muscle atrophy in both in vivo and in vitro conditions, accompanied by loss of bone mass, enhanced muscle protein catabolism, abnormal mitochondrial homoeostasis, and elevated IL-6 levels. Therefore, this represents an appropriate model for the study of OC cachexia. Our model will aid in identifying molecular mediators that could be effectively targeted in order to improve muscle wasting associated with OC.


Assuntos
Osso e Ossos/patologia , Caquexia/diagnóstico , Caquexia/etiologia , Atrofia Muscular/patologia , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/patologia , Animais , Biomarcadores , Composição Corporal , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Linhagem Celular Tumoral , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Xenoenxertos , Humanos , Camundongos , Mitocôndrias/metabolismo , Força Muscular , Atrofia Muscular/diagnóstico por imagem , Atrofia Muscular/metabolismo , Tamanho do Órgão , Neoplasias Ovarianas/metabolismo , Transdução de Sinais , Microtomografia por Raio-X
9.
Cell Rep ; 22(6): 1531-1544, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29425508

RESUMO

Exercise has beneficial effects on metabolism and on tissues. The exercise-induced muscle factor ß-aminoisobutyric acid (BAIBA) plays a critical role in the browning of white fat and in insulin resistance. Here we show another function for BAIBA, that of a bone-protective factor that prevents osteocyte cell death induced by reactive oxygen species (ROS). l-BAIBA was as or more protective than estrogen or N-acetyl cysteine, signaling through the Mas-Related G Protein-Coupled Receptor Type D (MRGPRD) to prevent the breakdown of mitochondria due to ROS. BAIBA supplied in drinking water prevented bone loss and loss of muscle function in the murine hindlimb unloading model, a model of osteocyte apoptosis. The protective effect of BAIBA was lost with age, not due to loss of the muscle capacity to produce BAIBA but likely to reduced Mrgprd expression with aging. This has implications for understanding the attenuated effect of exercise on bone with aging.


Assuntos
Envelhecimento/metabolismo , Ácidos Aminoisobutíricos/metabolismo , Músculo Esquelético/metabolismo , Osteócitos/metabolismo , Animais , Feminino , Elevação dos Membros Posteriores , Masculino , Camundongos , Estresse Oxidativo
10.
Sci Rep ; 7(1): 14470, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089584

RESUMO

Chemotherapy promotes the development of cachexia, a debilitating condition characterized by muscle and fat loss. ACVR2B/Fc, an inhibitor of the Activin Receptor 2B signaling, has been shown to preserve muscle mass and prolong survival in tumor hosts, and to increase bone mass in models of osteogenesis imperfecta and muscular dystrophy. We compared the effects of ACVR2B/Fc on muscle and bone mass in mice exposed to Folfiri. In addition to impairing muscle mass and function, Folfiri had severe negative effects on bone, as shown by reduced trabecular bone volume fraction (BV/TV), thickness (Tb.Th), number (Tb.N), connectivity density (Conn.Dn), and by increased separation (Tb.Sp) in trabecular bone of the femur and vertebra. ACVR2B/Fc prevented the loss of muscle mass and strength, and the loss of trabecular bone in femurs and vertebrae following Folfiri administration. Neither Folfiri nor ACVR2B/Fc had effects on femoral cortical bone, as shown by unchanged cortical bone volume fraction (Ct.BV/TV), thickness (Ct.Th) and porosity. Our results suggest that Folfiri is responsible for concomitant muscle and bone degeneration, and that ACVR2B/Fc prevents these derangements. Future studies are required to determine if the same protective effects are observed in combination with other anticancer regimens or in the presence of cancer.


Assuntos
Receptores de Activinas Tipo II/fisiologia , Densidade Óssea/efeitos dos fármacos , Distrofias Musculares/patologia , Receptores de Activinas Tipo II/metabolismo , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Osso e Ossos , Caquexia/tratamento farmacológico , Camptotecina/efeitos adversos , Camptotecina/análogos & derivados , Tratamento Farmacológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/fisiopatologia , Feminino , Fêmur/efeitos dos fármacos , Fluoruracila/efeitos adversos , Quimioterapia de Indução/métodos , Leucovorina/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos , Músculo Esquelético/patologia
11.
Anal Biochem ; 516: 75-85, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27771391

RESUMO

Isomeric molecules present a challenge for analytical resolution and quantification, even with MS-based detection. The eight aminobutyric acid (ABA) isomers are of interest for their various biological activities, particularly γ-aminobutyric acid (GABA) and the d- and l-isomers of ß-aminoisobutyric acid (ß-AIBA; BAIBA). This study aimed to investigate LC-MS/MS-based resolution of these ABA isomers as their Marfey's (Mar) reagent derivatives. HPLC was able to separate three Mar-ABA isomers l-ß-ABA (l-BABA), and l- and d-α-ABA (AABA) completely, with three isomers (GABA, and d/l-BAIBA) in one chromatographic cluster, and two isomers (α-AIBA (AAIBA) and d-BABA) in a second cluster. Partially separated cluster components were deconvoluted using Gaussian peak fitting except for GABA and d-BAIBA. MS/MS detection of Marfey's derivatized ABA isomers provided six MS/MS fragments, with substantially different intensity profiles between structural isomers. This allowed linear deconvolution of ABA isomer peaks. Combining HPLC separation with linear and Gaussian deconvolution allowed resolution of all eight ABA isomers. Application to human serum found a substantial level of l-AABA (13 µM), an intermediate level of l-BAIBA (0.8 µM), and low but detectable levels (<0.2 µM) of GABA, l-BABA, AAIBA, d-BAIBA, and d-AABA. This approach should be useful for LC-MS/MS deconvolution of other challenging groups of isomeric molecules.


Assuntos
Aminobutiratos/sangue , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Humanos
12.
Arch Oral Biol ; 71: 38-45, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27421098

RESUMO

OBJECTIVE: The aim of the current study was to investigate whether Smad2 overexpression in JE cells induced alveolar bone loss, and to understand the mechanisms regulating the bone loss. METHODS: A mouse line was created that used a cytokeratin 14 (K14) promoter to overexpress Smad2 in the epithelium of the transgenic mice (K14-Smad2). Micro CT radiographs (µCT) were used to assess bone loss, bone volume, and bone density. The expression of Tnfα, Il1-ß, Ifγ, Rankl, and Opg were assessed by RT-PCR. Western blots were used to detect the protein levels of TNF-α and IL1-ß. Tartrate-resistant acid phosphatase (TRAP) was used as a marker for osteoclasts. Wild type (WT) mice were used as controls in all steps of the current study. RESULTS: K14-Smad2 mice had 52.5% (±4.2) root exposed compared to 32.4%(±3.2) in the WT mice. There was a significant difference in alveolar bone volume in the K14-Smad2 mice when compared to WT mice 2.65mm3 (±0.3) and 4.3mm3 (±0.35) respectively. K14-Smad2 mice also had reduced bone density 696.8mg/cc (±70) at 12 months when compared to WT mice 845.9mg/cc(±10). The mRNA levels of Tnfα and Rankl increased by 3.26- and 2.5-fold respectively in the K14-Smad2 mice when compared to controls. The protein level of TNF-α was also significantly increased to 2.8-fold in K14-Smad2 mice when compared to WT mice. Smad2 overexpression increased the total numbers of osteoclasts in K14-Smad2 mice (3.4±0.2)-fold when compared to WT mice. CONCLUSION: Smad2 overexpression induces alveolar bone loss and increases the numbers of osteoclasts. Also, Smad2 overexpression up-regulates TNF-α and RANKL.


Assuntos
Perda do Osso Alveolar/metabolismo , Ligante RANK/metabolismo , Proteína Smad2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Perda do Osso Alveolar/diagnóstico por imagem , Animais , Western Blotting , Densidade Óssea , Genótipo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Transgênicos , Osteoprotegerina/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima , Microtomografia por Raio-X
13.
Int J Dev Biol ; 58(5): 335-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25354453

RESUMO

During secondary palate development, palatal shelves adhere to each other in the midline to form a midline epithelial seam leading to palatal closure. Cell-cell and cell-extracellular matrix adhesions, which are mediated by cell adhesion receptors, E-cadherin and integrins, are implicated in the process of adhesion of the palatal shelves. Src family kinases (SFK) function downstream of both receptors. In this study, we focused on the role of SFK in the process of palatal adhesion. During palatal adhesion, the expression of SFK mRNA, as well as localization and quantitation of the protein in the activated form, were examined by real-time qPCR and immunofluorescence. Palatal organ cultures were performed to identify the effect of pharmacological inhibition of SFK on palatal adhesion. Activated SFKs were found to be co-localized with adhesion receptors, E-cadherin and integrins in the palatal medial edge epithelium. Src, Fyn and Yes subfamily members were expressed in the palatal tissue. The expression of SFK mRNA and the quantity of the activated form of the protein were upregulated during palatal adhesion. An SFK inhibitor, PP2, blocked palatal adhesion, but another SFK inhibitor, SU6656 was not inhibitory. However, the combination of SU6656 and either of the p38MAPK inhibitors, SB203580 or BIRB0796, showed similar inhibitory effects on palatal adhesion compared to PP2 alone. The p38MAPK inhibitors alone did not alter palatal adhesion. Real-time qPCR revealed that p38MAPK alpha and delta were elevated during palatal adhesion. This study indicates that palatal cell adhesion is dependent on signaling from integrin receptors and E-cadherin through SFK and p38MAPK.


Assuntos
Adesão Celular/fisiologia , Palato/embriologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases da Família src/metabolismo , Animais , Citoesqueleto/metabolismo , Camundongos , Técnicas de Cultura de Órgãos , Palato/metabolismo , Transdução de Sinais/fisiologia
14.
Int J Dev Biol ; 57(1): 55-60, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23585353

RESUMO

During palatal fusion, the midline epithelial seam (MES) degrades to achieve mesenchymal confluence. Epithelial mesenchymal transition (EMT) is one mechanism which is active in MES degradation. TGF-ß induces EMT in medial edge epithelium (MEE) by down-regulation of an epithelial marker, E-cadherin. Microtubule disassembly impaired palatal fusion leading to a multi-layered MES in the mid-region. In this study, we investigated the effect of microtubule disruption on the regulation of the E-cadherin/catenin adhesion complex. Nocodazole (NDZ) enhanced the accumulation of the adhesion complex at cell-cell contacts in MEE, while loss of the adhesion complex was observed in the control. NDZ caused aberrant regulation of the E-cadherin transcriptional repressors (Snail and Zeb) and the activator (c-MYC) through inhibition of the TGF-ß/SMAD2 signaling pathway, which led to a failure in EMT. These results suggest that the microtubule cytoskeleton plays an important role in mediating TGF-ß/SMAD2 signals to control E-cadherin gene expression in MEE during palatal fusion.


Assuntos
Caderinas/metabolismo , Microtúbulos/metabolismo , Palato/embriologia , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Cateninas/metabolismo , Adesão Celular/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Citoesqueleto/metabolismo , Transição Epitelial-Mesenquimal , Camundongos , Camundongos Endogâmicos C57BL , Nocodazol/farmacologia , Técnicas de Cultura de Órgãos , Palato/metabolismo , Proteínas Proto-Oncogênicas c-myc/biossíntese , Transdução de Sinais , Fatores de Transcrição da Família Snail , Fatores de Transcrição/biossíntese , Moduladores de Tubulina/farmacologia
15.
Arch Oral Biol ; 57(11): 1567-73, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22964108

RESUMO

OBJECTIVE: Gingival junctional epithelium (JE) actively contributes to the homeostasis of the periodontium. Altered activation of TGF-ß signalling is implicated in the epithelium from chronic periodontitis. However, little is known about the effects of TGF-ß signalling on the JE. In this study, we investigated the relationship between Smad2, which plays an important role in mediating TGF-ß signal, and induction of apoptosis in the JE. METHODS: K14-Smad2 transgenic mice were used to observe the effect of over-expression of Smad2 driven by CK14 promoter in the JE. We performed TUNEL technique to evaluate the epithelial apoptosis. Expression of apoptosis related genes was examined using real-time PCR and immunofluorescence. RESULTS: K14-Smad2 mice showed an increased number of phospho-Smad2 positive JE cells associated with an increase in TGF-ß1 expression. K14-Smad2 mice have a significantly higher percentage of TUNEL positive cells in the JE. Immunofluorescence double labelling revealed that TUNEL positive cells showed immunoreactivity to phospho-Smad2. Real-time PCR analysis of apoptosis related gene expression provided evidence of lower expression of Bcl-2 in the gingival tissue from K14-Smad2 mice. There was a strong positive reaction for Bcl-2 protein in the junctional epithelium of wild type mice, while the gingival tissue of K14-Smad2 transgenic mice had only a faint signal for Bcl-2. CONCLUSIONS: The present study provided evidence that Smad2 plays a crucial role in the induction of apoptosis in gingival JE through inhibition of Bcl-2.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose/fisiologia , Inserção Epitelial/metabolismo , Genes bcl-2/fisiologia , Gengiva/metabolismo , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Expressão Gênica , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Proteína Smad2/genética
16.
Dev Dyn ; 241(7): 1169-82, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22565548

RESUMO

BACKGROUND: Formation of the secondary palate is complex and disturbance during palatal fusion may result in cleft palate. The processes of adhesion, intercalation, and disappearance of medial edge epithelia (MEE) are characterized by morphological changes requiring dynamic cytoskeletal rearrangement. Microtubules are one of the cytoskeletal elements involved in maintenance of cell morphology. Microtubule-disrupting drugs have been reported to cause craniofacial malformations including cleft palate. The mechanisms underlying the failure of palatal fusion remain poorly understood. We evaluated the effect of nocodazole (NDZ), a drug that disrupts microtubules, on palatal fusion in organ culture. RESULTS: NDZ caused failure of palatal fusion due to the induction of a multi-layered hypertrophied MEE in the mid-region of the secondary palatal shelves. Microtubule disruption increased RhoA activity and stress fiber formation. Pharmacological inhibition of the RhoA/ROCK pathway blocked multi-layered MEE formation. Partial prevention of hypertrophied MEE was observed with Y27632 and cytochalasin, but not with blebbistatin. NDZ induced re-localization of GEF-H1 into cytoplasm from cell-cell junctions. CONCLUSIONS: The present study provided evidence that the GEF-H1/RhoA/ROCK pathway plays a pivotal role in linking microtubule disassembly to the remodeling of the actin cytoskeleton, which resulted in a multi-layered hypertrophied MEE and failure of palatal fusion.


Assuntos
Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Western Blotting , Proliferação de Células/efeitos dos fármacos , Feminino , Imunofluorescência , Fatores de Troca do Nucleotídeo Guanina , Hipertrofia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Nocodazol/farmacologia , Técnicas de Cultura de Órgãos , Palato/efeitos dos fármacos , Palato/embriologia , Palato/metabolismo , Gravidez , Proteínas Proto-Oncogênicas , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Troca de Nucleotídeo Guanina Rho , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteína rhoA de Ligação ao GTP/genética
17.
Cells Tissues Organs ; 193(1-2): 53-63, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21051860

RESUMO

The medial epithelial seam (MES) between the palatal shelves degrades during palatal fusion to achieve the confluence of palatal mesenchyme. Cellular mechanisms underlying the degradation of MES have been proposed, such as apoptosis, epithelial-mesenchymal transition (EMT) and migration of medial edge epithelia (MEE). Extracellular matrix components have been shown to play an important role in EMT in many model systems. Periostin (also known as osteoblast-specific factor-2) is a secreted mesenchymal extracellular matrix component that affects the ability of cells to migrate and/or facilitates EMT during both embryonic development and pathologic conditions. In this study, we evaluated the spatiotemporal expression patterns of periostin during mouse palatal fusion by in situ hybridization and immunofluorescence. Periostin mRNA and protein were present in the palatal mesenchyme, the protein being distributed in a fine fibrillar network and in the basement membrane, but absent from the epithelium. During MES degradation, the protein was strongly expressed in the basement membrane underlying the MES and in some select MEE. Confocal microscopic analysis using an EMT marker, twist1, and an epithelial marker, cytokeratin 14, provided evidence that select MEE were undergoing EMT in association with periostin. Moreover, the major extracellular matrix molecules in basement membrane, laminin and collagen type IV were degraded earlier than periostin. The result is that select MEE establish interactions with periostin in the mesenchymal extracellular matrix, and these new cell-matrix interactions may regulate MEE transdifferentiation during palatal fusion.


Assuntos
Moléculas de Adesão Celular/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Palato/embriologia , Palato/metabolismo , Animais , Moléculas de Adesão Celular/genética , Transição Epitelial-Mesenquimal/genética , Imunofluorescência , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal
18.
J Bone Miner Res ; 25(12): 2657-68, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20578217

RESUMO

Glucocorticoids are known to induce osteocyte apoptosis, whereas mechanical loading has been shown to sustain osteocyte viability. Here we show that mechanical loading in the form of fluid-flow shear stress blocks dexamethasone-induced apoptosis of osteocyte-like cells (MLO-Y4). Prostaglandin E(2) (PGE(2) ), a rapidly induced signaling molecule produced by osteocytes, was shown to be protective against dexamethasone-induced apoptosis, whereas indomethacin reversed the antiapoptotic effects of shear stress. This protective effect of shear stress was mediated through EP2 and EP4 receptors, leading to activation of the cAMP/protein kinase A signaling pathway. Activation of phosphatidylinositol 3-kinase, an inhibitor of glycogen synthesis kinase 3, also occurred, leading to the nuclear translocation of ß-catenin, an important signal transducer of the Wnt signaling pathway. Both shear stress and prostaglandin increased the phosphorylation of glycogen synthesis kinase 3 α/ß. Lithium chloride, an activator of the Wnt pathway, also was protective against glucocorticoid-induced apoptosis. Whereas it is known that mechanical loading increases cyclooxygenase-2 and EP2 receptor expression and prostaglandin production, dexamethasone was shown to inhibit expression of these components of the prostaglandin pathway and to reduce ß-catenin protein expression. ß-catenin siRNA knockdown experiments abrogated the protective effects of PGE(2), confirming the central role of ß-catenin in mediating the protection against dexamethasone-induced cell death. Our data support a central role for PGE(2) acting through the cAMP/PKA and ß-catenin signaling pathways in the protection of osteocyte apoptosis by fluid-flow shear stress.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Glucocorticoides/farmacologia , Osteócitos/citologia , Estresse Mecânico , beta Catenina/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Meios de Cultivo Condicionados/farmacologia , Dexametasona/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Indometacina/farmacologia , Cloreto de Lítio/farmacologia , Camundongos , Modelos Biológicos , Osteócitos/efeitos dos fármacos , Osteócitos/enzimologia , Fosfatidilinositol 3-Quinase , Substâncias Protetoras/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Reologia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
19.
Arch Oral Biol ; 54(7): 618-24, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19406381

RESUMO

Periodontal ligament (PDL) cells appear to play important functional roles in response to mechanical stress. We hypothesized that hypoxia caused by a deformation of blood vessels and the following ischaemia may play a crucial role in differential gene expression in PDL cells affected by mechanical stress. Gene induction in cultured human PDL cells by hypoxia was analyzed using cDNA array, followed by RT-PCR analysis. Eleven hypoxia-responsive genes were found differentially expressed under low-oxygen conditions in PDL cells. Among them, CCR2, CC chemokine ligand 2 (CCL2) receptor was studied in more detail since little information is available on the role of chemokines in adaptive responses of PDL cells under hypoxia. Here we investigate whether CCR2 mediates the signalling to maintain the homeostasis of PDL cells. We found that cell death of PDL cells was induced under hypoxia with down-regulation of CCL2 mRNA expression. However, the exogenous CCL2 prevented PDL cell death under oxygen shortage with the increment of cellular inhibitor of apoptosis (cIAP) mRNA expression. The present study demonstrated substantial effects of hypoxia on gene expression of CCL2 and CCR2 in PDL cells, indicating that mechanical loading accompanied with mild hypoxia allows PDL cells to elicit adaptive responses with up-regulation of CCR2.


Assuntos
Hipóxia Celular/genética , Quimiocina CCL2/genética , Perfilação da Expressão Gênica , Ligamento Periodontal/citologia , Apoptose/genética , Proteína 3 com Repetições IAP de Baculovírus , Morte Celular/genética , Sobrevivência Celular/genética , Células Cultivadas , Regulação para Baixo , Regulação da Expressão Gênica/genética , Homeostase/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas Inibidoras de Apoptose/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Receptores CCR2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Estresse Mecânico , Ubiquitina-Proteína Ligases
20.
Arch Oral Biol ; 50(12): 1023-31, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15922993

RESUMO

Periostin, which is a secreted protein that supports cell adhesion, is highly expressed in the periodontal ligament (PDL). Twist, a basic helix-loop-helix (bHLH) transcription factor and a negative regulator of osteoblast differentiation, has been found to regulate the periostin gene transcription. Since occlusal force is thought to be important in the homeostasis of the PDL, in this study we investigated the expression of periostin and Twist mRNA in the mouse periodontal tissue following removal of antagonizing teeth. Unilateral maxillary tooth extraction was performed in 3-week-old male mice to produce occlusal hypofunction of the right mandibular molars. The expressions of periostin and Twist mRNA were examined by real time-PCR and in situ hybridization at 12, 24, 72 and 168 h after the tooth extraction. The real-time PCR analysis showed that periostin and Twist mRNA significantly decreased at 24 h to 14.5 and 49.9% of those in control group, respectively. But the recovery began at 72 and 168 h, no significant difference was observed. As determined by in situ hybridization analysis, the number of periostin and Twist mRNA-expressing PDL cells showed a marked decrease at 24 h, although an increase was observed from 72 h until the distribution was almost similar to that of the control group at 168 h. These results suggested that occlusal force might have putative roles in periostin and Twist gene expression in the PDL and the changes in their expression level during hypofunction may be considered a form of adaptation to environmental changes.


Assuntos
Moléculas de Adesão Celular/genética , Ligamento Periodontal/metabolismo , RNA Mensageiro/análise , Proteína 1 Relacionada a Twist/genética , Animais , Força de Mordida , Hibridização In Situ/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Movimento , Ligamento Periodontal/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...