Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 11(10): 4314-8, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21875079

RESUMO

Indium phosphide (InP) nanowires, which have crystal phase mixing and transition from zinc blende (ZB) to wurtzite (WZ), are grown in intermediate growth conditions between ZB and WZ by using selective-area metalorganic vapor phase epitaxy (SA-MOVPE). The shape of InP nanowires is tapered unlike ZB or WZ nanowires. A growth model has been developed for the tapered nanowires, which is simply described as the relationship between tapered angle and the ratio of ZB and WZ segments. In addition, the peak energy shift in photoluminescence measurement was attributed to the quantum confinement effect of the quantum well of the ZB region located in the polytypic structure of ZB and WZ in nanowires.

2.
Nano Lett ; 10(5): 1699-703, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20387797

RESUMO

We study the catalyst-free growth of InP nanowires using selective-area metalorganic vapor phase epitaxy (SA-MOVPE) and show that they undergo transition of crystal structures depending on the growth conditions. InP nanowires were grown on InP substrates where the mask for the template of the growth was defined. The nanowires were grown only in the opening region of the mask. It was found that uniform array of InP nanowires with hexagonal cross section and with negligible tapering were grown under two distinctive growth conditions. The nanowires grown in two different growth conditions were found to exhibit different crystal structures. It was also found that the orientation and size of hexagon were different, suggesting that the difference of the growth behavior. A model for the transition of crystal structure is presented based on the atomic arrangements and termination of InP surfaces. Photoluminescence measurement revealed that the transition took place for nanowires with diameters up to 1 microm.


Assuntos
Índio/química , Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fosfinas/química , Simulação por Computador , Substâncias Macromoleculares/química , Conformação Molecular , Tamanho da Partícula , Transição de Fase , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA